AI agent workflow patterns including ReAct agents, multi-agent systems, loop control, tool orchestration, and autonomous agent architectures. Use when building AI agents, implementing workflows, creating autonomous systems, or when user mentions agents, workflows, ReAct, multi-step reasoning, loop control, agent orchestration, or autonomous AI.
/plugin marketplace add vanman2024/ai-dev-marketplace/plugin install vercel-ai-sdk@ai-dev-marketplaceThis skill is limited to using the following tools:
templates/react-agent.tsPurpose: Provide production-ready agent architectures, workflow patterns, and loop control strategies for building autonomous AI systems with Vercel AI SDK.
Activation Triggers:
Key Resources:
templates/react-agent.ts - ReAct agent patterntemplates/multi-agent-system.ts - Multiple specialized agentstemplates/workflow-orchestrator.ts - Workflow coordinationtemplates/loop-control.ts - Iteration and safeguardstemplates/tool-coordinator.ts - Tool orchestrationscripts/validate-agent.sh - Validate agent configurationexamples/ - Production agent implementations (RAG agent, SQL agent, etc.)When to use: Complex problem-solving requiring iterative thought and action
Template: templates/react-agent.ts
Pattern:
async function reactAgent(task: string, maxIterations: number = 5) {
const tools = { /* tool definitions */ }
let iteration = 0
while (iteration < maxIterations) {
// Reasoning step
const thought = await generateText({
model: openai('gpt-4o')
messages: [
{ role: 'system', content: 'Think step-by-step...' }
{ role: 'user', content: task }
]
})
// Acting step (tool calls)
const action = await generateText({
model: openai('gpt-4o')
tools
toolChoice: 'auto'
messages: [/* ... */]
})
// Check if task complete
if (isComplete(action)) break
iteration++
}
return result
}
Best for: Research, analysis, complex planning
When to use: Complex domains requiring specialized expertise
Template: templates/multi-agent-system.ts
Pattern:
Best for: Multi-domain problems, parallel task execution
When to use: Pre-defined sequences of steps
Template: templates/workflow-orchestrator.ts
Pattern:
Best for: Structured processes, pipelines
const config = {
maxIterations: 10
onMaxIterations: 'return-last' | 'throw-error'
}
Prevents: Infinite loops
const config = {
maxTokens: 10000
onMaxTokens: 'graceful-stop'
}
Prevents: Runaway costs
const config = {
maxDuration: 30000, // 30 seconds
onTimeout: 'return-partial'
}
Prevents: Long-running operations
const config = {
stopCondition: (result) => result.confidence > 0.9
}
Ensures: Quality outputs
const tools = {
search: tool({ /* ... */ })
analyze: tool({ /* ... */ })
summarize: tool({ /* ... */ })
}
// AI decides order and usage
const result = await generateText({
model: openai('gpt-4o')
tools
maxToolRoundtrips: 5
})
const results = await Promise.all([
callTool('search', { query: 'topic1' })
callTool('search', { query: 'topic2' })
callTool('search', { query: 'topic3' })
])
interface AgentState {
conversation: Message[]
context: Record<string, any>
toolResults: ToolResult[]
iteration: number
}
class StatefulAgent {
private state: AgentState
async execute(task: string) {
while (!this.isComplete()) {
await this.step()
this.updateState()
}
return this.state
}
}
try {
result = await agent.execute(task)
} catch (error) {
if (error.code === 'MAX_ITERATIONS') {
return agent.getBestSoFar()
}
throw error
}
agent.on('iteration', ({ count, result }) => {
metrics.record('agent.iteration', { count })
})
Example: examples/rag-agent.ts
Retrieves information and answers questions
Example: examples/sql-agent.ts
Queries databases using natural language
Example: examples/research-agent.ts
Gathers and synthesizes information
Example: examples/code-agent.ts
Writes and debugs code
Templates:
react-agent.ts - ReAct pattern implementationmulti-agent-system.ts - Multi-agent coordinationworkflow-orchestrator.ts - Workflow executionloop-control.ts - Iteration safeguardstool-coordinator.ts - Tool orchestrationScripts:
validate-agent.sh - Agent config validationExamples:
rag-agent.ts - Complete RAG agentsql-agent.ts - Natural language SQLresearch-agent.ts - Information gatheringcode-agent.ts - Code generationSDK Version: Vercel AI SDK 5+ Agent Frameworks: Built-in tools, MCP integration
Best Practice: Start simple (single tool), add complexity as needed
This skill should be used when the user asks to "create a slash command", "add a command", "write a custom command", "define command arguments", "use command frontmatter", "organize commands", "create command with file references", "interactive command", "use AskUserQuestion in command", or needs guidance on slash command structure, YAML frontmatter fields, dynamic arguments, bash execution in commands, user interaction patterns, or command development best practices for Claude Code.
This skill should be used when the user asks to "create an agent", "add an agent", "write a subagent", "agent frontmatter", "when to use description", "agent examples", "agent tools", "agent colors", "autonomous agent", or needs guidance on agent structure, system prompts, triggering conditions, or agent development best practices for Claude Code plugins.
This skill should be used when the user asks to "create a hook", "add a PreToolUse/PostToolUse/Stop hook", "validate tool use", "implement prompt-based hooks", "use ${CLAUDE_PLUGIN_ROOT}", "set up event-driven automation", "block dangerous commands", or mentions hook events (PreToolUse, PostToolUse, Stop, SubagentStop, SessionStart, SessionEnd, UserPromptSubmit, PreCompact, Notification). Provides comprehensive guidance for creating and implementing Claude Code plugin hooks with focus on advanced prompt-based hooks API.