Master quick plotting and interactive visualization with hvPlot. Use this skill when creating basic plots (line, scatter, bar, histogram, box), visualizing pandas DataFrames with minimal code, adding interactivity and hover tools, composing multiple plots in layouts, or generating publication-quality visualizations rapidly.
/plugin marketplace add uw-ssec/rse-agents/plugin install holoviz-visualization@rse-agentsThis skill inherits all available tools. When active, it can use any tool Claude has access to.
Master quick plotting and interactive visualization with hvPlot and HoloViews basics. This skill covers essential techniques for creating publication-quality plots with minimal code.
hvPlot provides an intuitive, pandas-like API for rapid visualization:
import hvplot.pandas
import pandas as pd
import numpy as np
# Create sample data
df = pd.DataFrame({
'date': pd.date_range('2024-01-01', periods=100),
'sales': np.cumsum(np.random.randn(100)) + 100,
'region': np.random.choice(['North', 'South', 'East', 'West'], 100)
})
# Simple line plot
df.hvplot.line(x='date', y='sales', title='Sales Over Time')
# Grouped plot
df.hvplot.line(x='date', y='sales', by='region', subplots=True)
# Scatter with size and color
df.hvplot.scatter(x='sales', y='date', c='region', size=50)
# Bar plot
df.hvplot.bar(x='region', y='sales', rot=45)
# Histogram
df['sales'].hvplot.hist(bins=30, title='Sales Distribution')
# Box plot
df.hvplot.box(y='sales', by='region')
# Area plot
df.hvplot.area(x='date', y='sales')
# KDE (Kernel Density Estimation)
df['sales'].hvplot.kde()
# Hexbin (for large datasets)
df.hvplot.hexbin(x='sales', y='date', gridsize=20)
# Apply consistent styling
plot = df.hvplot.line(
x='date',
y='sales',
title='Sales Trend',
xlabel='Date',
ylabel='Sales ($)',
color='#2E86DE',
line_width=2,
height=400,
width=700,
responsive=True,
legend='top_left'
)
# Color mapping
df.hvplot.scatter(
x='sales',
y='date',
c='sales',
cmap='viridis',
s=100
)
# Multiple series
df.hvplot.line(
x='date',
y=['sales'],
title='Performance Metrics'
)
# Hover information
df.hvplot.scatter(
x='sales',
y='date',
hover_cols=['region'],
tools=['hover', 'pan', 'wheel_zoom']
)
# Selection and linked views
import holoviews as hv
scatter = df.hvplot.scatter(x='sales', y='date')
scatter.opts(tools=['box_select'])
# Responsive sizing
plot = df.hvplot.line(
x='date',
y='sales',
responsive=True,
height=400
)
import geopandas as gpd
# Quick geographic plot
gdf = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
gdf.hvplot(
c='pop_est',
cmap='viridis',
geo=True,
frame_width=600
)
# City points on map
cities = gpd.GeoDataFrame({
'name': ['City A', 'City B'],
'geometry': [Point(0, 0), Point(1, 1)],
'population': [1000000, 500000]
})
cities.hvplot(
geo=True,
c='population',
size='population',
cmap='plasma'
)
import holoviews as hv
from holoviews import opts
# Curve
curve = hv.Curve(df, 'date', 'sales')
# Scatter
scatter = hv.Scatter(df, 'sales', 'date')
# Histogram
hist = hv.Histogram(df['sales'].values)
# Image (heatmap)
image = hv.Image(data)
# Bars
bars = hv.Bars(df, 'region', 'sales')
# Text annotations
text = hv.Text(0.5, 0.5, 'Hello HoloViews')
# Using .opts() method
plot = hv.Curve(df, 'date', 'sales').opts(
title='Sales Trend',
xlabel='Date',
ylabel='Sales',
color='#2E86DE',
line_width=2,
height=400,
width=700
)
# Using opts object
opts_obj = opts.Curve(
title='Sales',
color='navy',
line_width=2
)
plot = hv.Curve(df, 'date', 'sales').opts(opts_obj)
# Overlaying multiple plots
overlay = hv.Curve(df, 'date', 'sales') * hv.Scatter(df_subset, 'date', 'sales')
# Side-by-side layouts
layout = hv.Curve(df1, 'date', 'sales') + hv.Scatter(df2, 'date', 'value')
# Grid layouts
grid = (
(hv.Curve(data1) + hv.Scatter(data2)) /
(hv.Histogram(data3) + hv.Image(data4))
)
# Faceted views
faceted = hv.Curve(df, 'date', 'sales').facet('region')
# Brush selection
curve_selectable = hv.Curve(df, 'date', 'sales').opts(
tools=['box_select'],
selection_fill_color='red',
nonselection_fill_alpha=0.2
)
# Dynamic linking with streams
from holoviews import streams
# Hover information
hover = streams.Tap(source=scatter, transient=True)
@hv.transform
def get_info(data):
if data.empty:
return hv.Text(0, 0, 'Hover to select')
return hv.Text(0, 0, f"Point: {data.iloc[0].values}")
# Create a plotting utility module
class PlotBuilder:
COLORS = {'primary': '#2E86DE', 'secondary': '#A23B72'}
DEFAULTS = {'height': 400, 'width': 700, 'responsive': True}
@staticmethod
def style_plot(plot, **kwargs):
return plot.opts(**{**PlotBuilder.DEFAULTS, **kwargs})
# Usage
styled = PlotBuilder.style_plot(df.hvplot.line(x='date', y='sales'))
def create_sales_dashboard(df):
return hv.Column(
df.hvplot.line(x='date', y='sales', title='Trend'),
df.hvplot.bar(x='region', y='sales', title='By Region'),
df['sales'].hvplot.hist(bins=20, title='Distribution')
)
def plot_data(df, plot_type='line'):
if plot_type == 'line':
return df.hvplot.line(x='date', y='sales')
elif plot_type == 'scatter':
return df.hvplot.scatter(x='date', y='sales')
else:
return df.hvplot.bar(x='region', y='sales')
def plot_multiple_metrics(df, metrics):
plots = [df.hvplot.line(x='date', y=m, label=m) for m in metrics]
return hv.Overlay(plots)
hvplot.pandas or hvplot.xarray is importedrot=45by='column'This skill should be used when the user asks to "create a slash command", "add a command", "write a custom command", "define command arguments", "use command frontmatter", "organize commands", "create command with file references", "interactive command", "use AskUserQuestion in command", or needs guidance on slash command structure, YAML frontmatter fields, dynamic arguments, bash execution in commands, user interaction patterns, or command development best practices for Claude Code.
This skill should be used when the user asks to "create an agent", "add an agent", "write a subagent", "agent frontmatter", "when to use description", "agent examples", "agent tools", "agent colors", "autonomous agent", or needs guidance on agent structure, system prompts, triggering conditions, or agent development best practices for Claude Code plugins.
This skill should be used when the user asks to "create a hook", "add a PreToolUse/PostToolUse/Stop hook", "validate tool use", "implement prompt-based hooks", "use ${CLAUDE_PLUGIN_ROOT}", "set up event-driven automation", "block dangerous commands", or mentions hook events (PreToolUse, PostToolUse, Stop, SubagentStop, SessionStart, SessionEnd, UserPromptSubmit, PreCompact, Notification). Provides comprehensive guidance for creating and implementing Claude Code plugin hooks with focus on advanced prompt-based hooks API.