Semantic analysis for Claude Code consumption. TRIGGERS - analyze cast, keyword extraction, density analysis, find patterns, sharpe, backtest, iteration, trading keywords, ML keywords. Use when extracting insights from recordings.
Analyzes .txt recordings with ripgrep/YAKE to extract trading, ML, and development keywords.
/plugin marketplace add terrylica/cc-skills/plugin install asciinema-tools@cc-skillsThis skill is limited to using the following tools:
references/analysis-tiers.mdreferences/domain-keywords.mdSemantic analysis of converted .txt recordings for Claude Code consumption. Uses tiered analysis: ripgrep (primary, 50-200ms) -> YAKE (secondary, 1-5s) -> TF-IDF (optional).
Platform: macOS, Linux (requires ripgrep, optional YAKE)
| Tier | Tool | Speed (4MB) | When to Use |
|---|---|---|---|
| 1 | ripgrep | 50-200ms | Always start here (curated) |
| 2 | YAKE | 1-5s | Auto-discover unexpected terms |
| 3 | TF-IDF | 5-30s | Topic modeling (optional) |
Decision: Start with Tier 1 (ripgrep + curated keywords). Only use Tier 2 (YAKE) when auto-discovery is explicitly requested.
| Component | Required | Installation | Notes |
|---|---|---|---|
| ripgrep | Yes | brew install ripgrep | Primary search tool |
| YAKE | Optional | uv run --with yake | For auto-discovery tier |
IMPORTANT: All phases are MANDATORY. Do NOT skip any phase. AskUserQuestion MUST be used at each decision point.
Purpose: Verify input file exists and check for .txt (converted) format.
/usr/bin/env bash << 'PREFLIGHT_EOF'
INPUT_FILE="${1:-}"
if [[ -z "$INPUT_FILE" ]]; then
echo "NO_FILE_PROVIDED"
elif [[ ! -f "$INPUT_FILE" ]]; then
echo "FILE_NOT_FOUND: $INPUT_FILE"
elif [[ "$INPUT_FILE" == *.cast ]]; then
echo "WRONG_FORMAT: Convert to .txt first with /asciinema-tools:convert"
elif [[ "$INPUT_FILE" == *.txt ]]; then
SIZE=$(ls -lh "$INPUT_FILE" | awk '{print $5}')
LINES=$(wc -l < "$INPUT_FILE" | tr -d ' ')
echo "READY: $INPUT_FILE ($SIZE, $LINES lines)"
else
echo "UNKNOWN_FORMAT: Expected .txt file"
fi
PREFLIGHT_EOF
If no .txt file found, suggest running /asciinema-tools:convert first.
Purpose: Discover .txt files and let user select which to analyze.
/usr/bin/env bash << 'DISCOVER_TXT_EOF'
# Find .txt files that look like converted recordings
for file in $(fd -e txt . --max-depth 3 2>/dev/null | head -10); do
SIZE=$(ls -lh "$file" 2>/dev/null | awk '{print $5}')
LINES=$(wc -l < "$file" 2>/dev/null | tr -d ' ')
BASENAME=$(basename "$file")
echo "FILE:$file|SIZE:$SIZE|LINES:$LINES|NAME:$BASENAME"
done
DISCOVER_TXT_EOF
Question: "Which file would you like to analyze?"
Header: "File"
Options:
- Label: "{filename}.txt ({size})"
Description: "{line_count} lines"
- Label: "{filename2}.txt ({size2})"
Description: "{line_count2} lines"
- Label: "Enter path"
Description: "Provide a custom path to a .txt file"
- Label: "Convert first"
Description: "Run /asciinema-tools:convert before analysis"
Purpose: Let user choose analysis depth.
Question: "What type of analysis do you need?"
Header: "Type"
Options:
- Label: "Curated keywords (Recommended)"
Description: "Fast search (50-200ms) with domain-specific keyword sets"
- Label: "Auto-discover keywords"
Description: "YAKE unsupervised extraction (1-5s) - finds unexpected patterns"
- Label: "Full analysis"
Description: "Both curated + auto-discovery for comprehensive results"
- Label: "Density analysis"
Description: "Find high-concentration sections (peak activity windows)"
Purpose: Let user select which keyword domains to search.
Question: "Which domain keywords to search?"
Header: "Domain"
multiSelect: true
Options:
- Label: "Trading/Quantitative"
Description: "sharpe, sortino, calmar, backtest, drawdown, pnl, cagr, alpha, beta"
- Label: "ML/AI"
Description: "epoch, loss, accuracy, sota, training, model, validation, inference"
- Label: "Development"
Description: "iteration, refactor, fix, test, deploy, build, commit, merge"
- Label: "Claude Code"
Description: "Skill, TodoWrite, Read, Edit, Bash, Grep, iteration complete"
See Domain Keywords Reference for complete keyword lists.
Purpose: Run Grep searches for selected domain keywords.
/usr/bin/env bash << 'TRADING_EOF'
INPUT_FILE="${1:?}"
echo "=== Trading/Quantitative Keywords ==="
KEYWORDS="sharpe sortino calmar backtest drawdown pnl cagr alpha beta roi volatility"
for kw in $KEYWORDS; do
COUNT=$(rg -c -i "$kw" "$INPUT_FILE" 2>/dev/null || echo "0")
if [[ "$COUNT" -gt 0 ]]; then
echo " $kw: $COUNT"
fi
done
TRADING_EOF
/usr/bin/env bash << 'ML_EOF'
INPUT_FILE="${1:?}"
echo "=== ML/AI Keywords ==="
KEYWORDS="epoch loss accuracy sota training model validation inference tensor gradient"
for kw in $KEYWORDS; do
COUNT=$(rg -c -i "$kw" "$INPUT_FILE" 2>/dev/null || echo "0")
if [[ "$COUNT" -gt 0 ]]; then
echo " $kw: $COUNT"
fi
done
ML_EOF
/usr/bin/env bash << 'DEV_EOF'
INPUT_FILE="${1:?}"
echo "=== Development Keywords ==="
KEYWORDS="iteration refactor fix test deploy build commit merge debug error"
for kw in $KEYWORDS; do
COUNT=$(rg -c -i "$kw" "$INPUT_FILE" 2>/dev/null || echo "0")
if [[ "$COUNT" -gt 0 ]]; then
echo " $kw: $COUNT"
fi
done
DEV_EOF
/usr/bin/env bash << 'CLAUDE_EOF'
INPUT_FILE="${1:?}"
echo "=== Claude Code Keywords ==="
KEYWORDS="Skill TodoWrite Read Edit Bash Grep Write"
for kw in $KEYWORDS; do
COUNT=$(rg -c "$kw" "$INPUT_FILE" 2>/dev/null || echo "0")
if [[ "$COUNT" -gt 0 ]]; then
echo " $kw: $COUNT"
fi
done
# Special patterns
ITERATION=$(rg -c "iteration complete" "$INPUT_FILE" 2>/dev/null || echo "0")
echo " 'iteration complete': $ITERATION"
CLAUDE_EOF
Purpose: Run unsupervised keyword extraction.
/usr/bin/env bash << 'YAKE_EOF'
INPUT_FILE="${1:?}"
echo "=== Auto-discovered Keywords (YAKE) ==="
uv run --with yake python3 -c "
import yake
kw = yake.KeywordExtractor(
lan='en',
n=2, # bi-grams
dedupLim=0.9, # dedup threshold
top=20 # top keywords
)
with open('$INPUT_FILE') as f:
text = f.read()
keywords = kw.extract_keywords(text)
for score, keyword in keywords:
print(f'{score:.4f} {keyword}')
"
YAKE_EOF
Purpose: Find sections with highest keyword concentration.
/usr/bin/env bash << 'DENSITY_EOF'
INPUT_FILE="${1:?}"
KEYWORD="${2:-sharpe}"
WINDOW_SIZE=100 # lines
echo "=== Density Analysis: '$KEYWORD' ==="
echo "Window size: $WINDOW_SIZE lines"
echo ""
TOTAL_LINES=$(wc -l < "$INPUT_FILE" | tr -d ' ')
TOTAL_MATCHES=$(rg -c -i "$KEYWORD" "$INPUT_FILE" 2>/dev/null || echo "0")
echo "Total matches: $TOTAL_MATCHES in $TOTAL_LINES lines"
echo "Overall density: $(echo "scale=4; $TOTAL_MATCHES / $TOTAL_LINES * 1000" | bc) per 1000 lines"
echo ""
# Find peak windows
echo "Top 5 densest windows:"
awk -v ws="$WINDOW_SIZE" -v kw="$KEYWORD" '
BEGIN { IGNORECASE=1 }
{
lines[NR] = $0
if (tolower($0) ~ tolower(kw)) matches[NR] = 1
}
END {
for (start = 1; start <= NR - ws; start += ws/2) {
count = 0
for (i = start; i < start + ws && i <= NR; i++) {
if (matches[i]) count++
}
if (count > 0) {
printf "Lines %d-%d: %d matches (%.1f per 100)\n", start, start+ws-1, count, count*100/ws
}
}
}
' "$INPUT_FILE" | sort -t: -k2 -rn | head -5
DENSITY_EOF
Purpose: Let user choose output format.
Question: "How should results be presented?"
Header: "Output"
Options:
- Label: "Summary table (Recommended)"
Description: "Keyword counts + top 5 peak sections"
- Label: "Detailed report"
Description: "Full analysis with timestamps and surrounding context"
- Label: "JSON export"
Description: "Machine-readable output for further processing"
- Label: "Markdown report"
Description: "Save formatted report to file"
Purpose: Guide user to next action.
Question: "Analysis complete. What's next?"
Header: "Next"
Options:
- Label: "Jump to peak section"
Description: "Read the highest-density section in the file"
- Label: "Search for specific keyword"
Description: "Grep for a custom term with context"
- Label: "Cross-reference with .cast"
Description: "Map findings back to original timestamps"
- Label: "Done"
Description: "Exit - no further action needed"
1. [Preflight] Check input file exists and is .txt format
2. [Preflight] Suggest /convert if .cast file provided
3. [Discovery] Find .txt files with line counts
4. [Selection] AskUserQuestion: file to analyze
5. [Type] AskUserQuestion: analysis type (curated/auto/full/density)
6. [Domain] AskUserQuestion: keyword domains (multi-select)
7. [Curated] Run Grep searches for selected domains
8. [Auto] Run YAKE if auto-discovery selected
9. [Density] Calculate density windows if requested
10. [Format] AskUserQuestion: report format
11. [Next] AskUserQuestion: follow-up actions
After modifying this skill:
uv run --with yakeThis skill should be used when the user asks about libraries, frameworks, API references, or needs code examples. Activates for setup questions, code generation involving libraries, or mentions of specific frameworks like React, Vue, Next.js, Prisma, Supabase, etc.
Applies Anthropic's official brand colors and typography to any sort of artifact that may benefit from having Anthropic's look-and-feel. Use it when brand colors or style guidelines, visual formatting, or company design standards apply.
Creating algorithmic art using p5.js with seeded randomness and interactive parameter exploration. Use this when users request creating art using code, generative art, algorithmic art, flow fields, or particle systems. Create original algorithmic art rather than copying existing artists' work to avoid copyright violations.