This skill should be used when the user asks for "MCP examples", "real-world patterns", "code search patterns", "browser proxy patterns", "process management patterns", "show me examples", or wants to see actual implementations from lci, agnt, or other real MCPs.
Provides real-world MCP patterns from production servers (code search, browser proxy, process management, knowledge bases) showing token-efficient designs with ID references and progressive detail. Use when user requests "MCP examples", "real-world patterns", or wants concrete implementations to learn from.
/plugin marketplace add standardbeagle/standardbeagle-tools/plugin install mcp-architect@standardbeagle-toolsThis skill inherits all available tools. When active, it can use any tool Claude has access to.
Provide real-world MCP patterns from production servers: code search (lci), browser integration (agnt), process management, and knowledge bases.
search - Hub tool
{
"input": {"pattern": "string", "filter": "optional"},
"output": {
"results": [
{"id": "r1", "name": "User.authenticate", "preview": "...", "conf": 0.95}
],
"has_more": true,
"total": 127
}
}
get_definition - Spoke tool
{
"input": {"id": "r1"},
"output": {
"symbol_id": "s1",
"name": "User.authenticate",
"signature": "...",
"source": "...",
"location": {"file": "user.ts", "line": 42}
}
}
Token efficiency: ID reference saves ~80% tokens vs. repeating full code
Query: "authenticate"
High match (0.95): Full details (200 tokens)
- Name, signature, docs, preview, location
Medium match (0.70): Summary (50 tokens)
- Name, type, file
Low match (0.40): Minimal (10 tokens)
- Name, ID only
proxy_start - Create
{
"input": {"target_url": "http://localhost:3000"},
"output": {
"proxy_id": "dev",
"listen_addr": "http://localhost:12345",
"status": "running"
}
}
currentpage - Aggregation
{
"input": {"proxy_id": "dev"},
"output": {
"session_id": "page-1",
"url": "http://localhost:3000",
"errors_count": 3, // Not full error objects
"interactions_count": 127, // Not every interaction
"mutations_count": 45, // Not every mutation
"performance": {...}
},
"detail_access": "Use detail=['errors'] for full data"
}
Key pattern: Counts in overview, full data on request
proxy_id (dev)
↓
session_id (page-1)
↓
request_id (req_a1b2)
Each level provides more specificity.
Level 1 - Count
{
"active": 5,
"stopped": 2
}
Level 2 - List
{
"processes": [
{"id": "p1", "name": "dev-server", "status": "running"},
{"id": "p2", "name": "test", "status": "running"}
]
}
Level 3 - Status
{
"id": "p1",
"status": "running",
"uptime": "2h15m",
"memory": "245MB",
"preview": "Server listening :3000"
}
Level 4 - Full
{
/* ...all Level 3... */,
"full_output": "... complete logs ...",
"env": {...},
"metrics": {...}
}
list_topics()
→ ["auth", "deploy", "monitor"]
get_topic_summary("auth")
→ {articles: 12, updated: "2024-01"}
search_articles("OAuth")
→ [{id: "a1", title: "...", preview: "..."}]
get_article("a1")
→ {title, content, related: [...]}
All use IDs to avoid repeating data:
Savings: 70-90% token reduction
All vary detail by context:
All include standard flags:
{
"has_more": boolean,
"total": integer,
"returned": integer,
"complete": boolean
}
All accept unknown params with warnings:
const {known, params, ...extra} = input
if (extra) warnings.push(`Unknown: ${Object.keys(extra)}`)
Before (wasteful):
// Tool 1
{"results": [{"name": "...", "code": "... 200 lines ..."}]}
// Tool 2 needs same data
// User copies entire result
After (efficient):
// Tool 1
{"results": [{"id": "r1", "name": "...", "preview": "10 lines"}]}
// Tool 2
input: {"id": "r1"} // Reference only
Before:
{
"results": [
{"name": "...", "full": "... 500 tokens ..."},
{"name": "...", "full": "... 500 tokens ..."},
{"name": "...", "full": "... 500 tokens ..."}
]
}
After:
{
"results": [
{"id": "a1", "conf": 0.95, "full": "..."}, // Only high confidence
{"id": "b2", "conf": 0.70, "summary": "..."},
{"id": "c3", "conf": 0.40} // Just ID
]
}
Before (15+ tools, no organization):
search_users, search_posts, get_user, get_post, ...
After (grouped):
Query Tools: search
Lookup Tools: get_user, get_post
Management: create_user, update_user
Without IDs:
With IDs:
Without aggregation:
With aggregation:
examples/lci-workflow.json - Complete lci search workflowexamples/agnt-workflow.json - Browser debugging workflowexamples/process-workflow.json - Process management workflowProven patterns:
Key lessons:
Study these real-world examples when designing similar functionality.
Applies Anthropic's official brand colors and typography to any sort of artifact that may benefit from having Anthropic's look-and-feel. Use it when brand colors or style guidelines, visual formatting, or company design standards apply.
Creating algorithmic art using p5.js with seeded randomness and interactive parameter exploration. Use this when users request creating art using code, generative art, algorithmic art, flow fields, or particle systems. Create original algorithmic art rather than copying existing artists' work to avoid copyright violations.
Create beautiful visual art in .png and .pdf documents using design philosophy. You should use this skill when the user asks to create a poster, piece of art, design, or other static piece. Create original visual designs, never copying existing artists' work to avoid copyright violations.