Guides through adding new features, MCP tools, analyzers, and extending the patent creator system.
Guides Claude through extending the patent creator system by adding MCP tools, analyzers, configuration options, and features. Triggers when implementing new capabilities or modifying the system architecture.
/plugin marketplace add RobThePCGuy/Claude-Patent-Creator/plugin install robthepcguy-claude-patent-creator-standalone@RobThePCGuy/Claude-Patent-CreatorThis skill inherits all available tools. When active, it can use any tool Claude has access to.
Expert system for developing and extending the Claude Patent Creator. Guides through adding new MCP tools, analyzers, configuration options, and features while following best practices and existing patterns.
Activate when adding MCP tools, analyzers, configuration options, BigQuery queries, slash commands, or implementing performance optimizations.
Feature Request -> Planning -> Implementation (Code + Validation + Monitoring + Tests) -> Testing -> Documentation -> Integration
Quick Start:
mcp_server/validation.pymcp_server/server.py with decoratorsscripts/Key Decorators:
@mcp.tool() # Register as MCP tool
@validate_input(YourInput) # Pydantic validation
@track_performance # Performance monitoring
Template:
def your_tool(param: str, optional: int = 10) -> dict:
"""Comprehensive docstring (Claude sees this).
Args:
param: Description
optional: Description with default
Returns:
Dictionary containing: key1, key2, key3
"""
# Implementation
return {"result": "data"}
Overview: Analyzers inherit from BaseAnalyzer and check USPTO compliance.
Minimal Example:
from mcp_server.analyzer_base import BaseAnalyzer
class YourAnalyzer(BaseAnalyzer):
def __init__(self):
super().__init__()
self.mpep_sections = ["608", "2173"]
def analyze(self, content: str) -> dict:
issues = []
if violation:
issues.append({
"type": "violation_name",
"severity": "critical",
"mpep_citation": "MPEP 608",
"recommendation": "Fix description"
})
return {"compliant": len(issues) == 0, "issues": issues}
Use Pydantic settings in mcp_server/config.py:
# In config.py
class AppSettings(BaseSettings):
enable_feature_x: bool = Field(default=False, description="Enable X")
# In your code
from mcp_server.config import get_settings
if get_settings().enable_feature_x:
# Feature enabled
@track_performance
def your_function(data):
with OperationTimer("step1"):
result1 = step1(data)
with OperationTimer("step2"):
result2 = step2(result1)
return result2
Pipeline: Query -> HyDE -> Vector+BM25 -> RRF -> Reranking -> Results
Customization Points: Query expansion, custom scoring, filtering, reranking strategies
.claude/commands/your-command.mddescription, modelTemplate:
---
description: Brief command description
model: claude-sonnet-4-5-20250929
---
# Command Name
## When to Use
- Use case 1
## How It Works
Step 1: ...
Add BigQuery Query: Add method in mcp_server/bigquery_search.py
Add Validation Rule:
class YourInput(BaseModel):
field: str
@field_validator("field")
@classmethod
def validate_field(cls, v):
if not meets_requirement(v):
raise ValueError("Error message")
return v
Add Logging:
from mcp_server.logging_config import get_logger
logger = get_logger()
logger.info("event_name", extra={"context": "data"})
| Task | Primary File | Related Files |
|---|---|---|
| Add MCP tool | mcp_server/server.py | mcp_server/validation.py |
| Add analyzer | mcp_server/your_analyzer.py | mcp_server/analyzer_base.py |
| Add config | mcp_server/config.py | .env, CLAUDE.md |
| Add BigQuery query | mcp_server/bigquery_search.py | - |
| Add test | scripts/test_your_feature.py | - |
MCP Tool Pattern:
@mcp.tool()
@validate_input(InputModel)
@track_performance
def tool_name(param: type) -> dict:
"""Docstring visible to Claude."""
from module import Component
if invalid:
return {"error": "message"}
result = process(param)
return {"key": "value"}
Analyzer Pattern:
class YourAnalyzer(BaseAnalyzer):
def analyze(self, content: str) -> dict:
issues = []
issues.extend(self._check_x(content))
return {
"compliant": len(issues) == 0,
"issues": issues,
"recommendations": self._generate_recommendations(issues)
}