Linear Logic Skill
/plugin marketplace add plurigrid/asi/plugin install asi-skills@asi-skillsThis skill inherits all available tools. When active, it can use any tool Claude has access to.
README.md"Every resource used exactly once. No copying. No discarding. Pure computation."
Linear Logic implements Girard's linear logic for resource-aware computation. Linear types ensure resources are used exactly once, enabling safe concurrency and optimal memory management.
| Aspect | Value |
|---|---|
| Trit | -1 (MINUS) |
| Role | VALIDATOR |
| Function | Validates resource usage constraints |
┌─────────────────────────────────────────────────────────────────┐
│ LINEAR LOGIC CONNECTIVES │
├─────────────────────────────────────────────────────────────────┤
│ │
│ Multiplicative: Additive: │
│ │
│ A ⊗ B (tensor) A ⊕ B (plus/choice) │
│ A ⅋ B (par) A & B (with/product) │
│ 1 (unit) 0 (zero) │
│ ⊥ (bottom) ⊤ (top) │
│ │
│ Exponential: Negation: │
│ │
│ !A (of course) A⊥ (linear negation) │
│ ?A (why not) │
│ │
└─────────────────────────────────────────────────────────────────┘
-- Linear type: must be used exactly once
data Linear a where
Use :: a -> Linear a
-- Consume: takes ownership, returns result
consume :: Linear a -> (a -> b) -> b
consume (Use x) f = f x
-- Cannot duplicate linear values!
-- duplicate :: Linear a -> (Linear a, Linear a) -- FORBIDDEN
-- Cannot discard linear values!
-- discard :: Linear a -> () -- FORBIDDEN
┌───────────────────────────────────────┐
│ PROOF NET STRUCTURE │
└───────────────────────────────────────┘
A ⊗ B ⊸ C A ⅋ (B ⊸ C)
│ │
┌──┴──┐ ┌───┴───┐
│ ⊗ │ │ ⅋ │
└──┬──┘ └───┬───┘
╱ ╲ ╱ ╲
A B A B⊸C
╲ │
╲ ┌───┴───┐
╲ │ ⊸ │
╲ └───┬───┘
C ╱ ╲
B C
// Rust's ownership = linear types!
fn linear_example() {
let resource = acquire_resource(); // Linear resource
// resource can only be used once
consume(resource);
// This would fail to compile:
// consume(resource); // ERROR: use of moved value
// This would also fail:
// drop(resource); // ERROR: use of moved value
}
// Affine types (can discard but not duplicate)
fn affine_example() {
let resource = acquire_resource();
// Can choose to not use it (drop implicitly)
// But cannot use twice
}
class LinearValidator:
"""Validate linear resource usage with GF(3)."""
TRIT = -1 # VALIDATOR role
def validate_usage(self, program) -> bool:
"""
Check that all linear resources are used exactly once.
Returns True if program is linearly valid.
"""
resources = self.extract_linear_resources(program)
usage_counts = self.count_usages(program, resources)
for resource, count in usage_counts.items():
if count != 1:
return False # Used 0 times or >1 times
return True
def validate_proof_net(self, net) -> bool:
"""
Check proof net validity via Danos-Regnier criterion.
A proof net is valid iff:
- It's connected
- Switching gives acyclic graph
"""
for switching in self.all_switchings(net):
if self.has_cycle(switching):
return False
if not self.is_connected(switching):
return False
return True
-- !A means "unlimited copies of A"
-- ?A means "can be discarded"
-- Promotion: introduce !
promote :: a -> !a
-- Dereliction: use one copy
derelict :: !a -> a
-- Contraction: duplicate
contract :: !a -> (!a, !a)
-- Weakening: discard
weaken :: !a -> ()
-- The exponential modality allows escape from linearity
-- but must be explicitly introduced
| Linear Logic | Programming |
|---|---|
| A ⊗ B | Pair (both available) |
| A ⅋ B | Session type (one waits) |
| A ⊸ B | Linear function |
| !A | Unlimited resource |
| ?A | Discardable resource |
| A ⊕ B | Choice (select one) |
| A & B | Offer (provide both) |
(* Session types = linear logic for protocols *)
type 'a send = Send of 'a
type 'a recv = Recv of 'a
type close = Close
(* Protocol: send int, receive bool, close *)
type protocol = int send * bool recv * close
(* Dual: receive int, send bool, close *)
type dual_protocol = int recv * bool send * close
(* Session types ensure protocol compliance! *)
let server : dual_protocol -> unit =
fun session ->
let n = receive session in (* Must receive *)
send session (n > 0); (* Must send *)
close session (* Must close *)
linear-logic (-1) ⊗ interaction-nets (0) ⊗ hvm-runtime (+1) = 0 ✓
linear-logic (-1) ⊗ datalog-fixpoint (0) ⊗ lambda-calculus (+1) = 0 ✓
linear-logic (-1) ⊗ session-types (0) ⊗ discopy (+1) = 0 ✓
# Check linear validity
just linear-check program.linear
# Verify proof net
just linear-proofnet proof.net --criterion danos-regnier
# Session type check
just session-typecheck protocol.ml
# Convert to interaction net
just linear-to-inet proof.net -o output.inet
Skill Name: linear-logic Type: Logic / Type Theory Trit: -1 (MINUS - VALIDATOR) GF(3): Validates resource usage constraints
This skill connects to the K-Dense-AI/claude-scientific-skills ecosystem:
linear-algebra: 112 citations in bib.duckdbThis skill maps to Cat# = Comod(P) as a bicomodule in the Prof home:
Trit: 0 (ERGODIC)
Home: Prof (profunctors/bimodules)
Poly Op: ⊗ (parallel composition)
Kan Role: Adj (adjunction bridge)
The skill participates in triads where:
(-1) + (0) + (+1) ≡ 0 (mod 3)
This ensures compositional coherence in the Cat# equipment structure.