Latent-Latency Skill
/plugin marketplace add plurigrid/asi/plugin install asi-skills@asi-skillsThis skill inherits all available tools. When active, it can use any tool Claude has access to.
Trit: 0 (ERGODIC - mediates space ↔ time)
Bundle: core
Status: ✅ New
LATENT (Space) ↔ LATENCY (Time)
↓ ↓
Compression Speed
↓ ↓
Representation Response
↓ ↓
dim(z) τ_mix
Core Theorem: Good latent representations minimize latency.
t_response ∝ 1 / compression_ratio(z)
The spectral gap (λ₁ - λ₂) connects both domains:
| Domain | Spectral Gap Role |
|---|---|
| Latent | Separation of clusters in representation space |
| Latency | Mixing time τ_mix = O(log n / gap) |
From Ramanujan graphs (optimal expanders):
gap ≥ d - 2√(d-1) [Alon-Boppana bound]
τ_mix = O(log n) [Logarithmic mixing]
# Encoder: Observable → Latent
z = encode(x) # dim(z) << dim(x)
# Decoder: Latent → Reconstructed
x̂ = decode(z)
# Bidirectional loss
L = ||x - x̂||² + β·KL(q(z|x) || p(z))
# Fokker-Planck: Distribution evolution
∂p/∂t = ∇·(∇L(θ)·p) + T∆p
# Mixing time from Hessian
τ_mix ≈ 1 / λ_min(H)
# Gibbs equilibrium
p∞(θ) ∝ exp(-L(θ)/T)
τ_latency = f(dim_latent, spectral_gap, temperature)
Specifically:
τ_response = (dim(z) / gap) × log(1/ε)
Where:
- dim(z) = latent dimension
- gap = spectral gap of computation graph
- ε = target accuracy
From MCP_OPTIMAL_TRANSITIONS.md:
| MCP Server | Latency | Latent Cost | Energy |
|---|---|---|---|
gay | ~10ms | 0.1KB context | LOW |
tree-sitter | ~50ms | 1KB context | LOW |
exa | ~1s | 3KB context | HIGH |
firecrawl | ~2s | 10KB context | HIGH |
Optimal triad: gay → tree-sitter → marginalia (560ms, 5 energy)
From worlding_skill_omniglot_entropy.py:
class BidirectionalCharacterLearner:
def __init__(self, char_dim: int = 28, latent_dim: int = 64):
self.char_dim = char_dim
self.latent_dim = latent_dim # Compression ratio: 784 → 64
def encode_character(self, image: np.ndarray) -> np.ndarray:
"""READ: Image → Latent Code (learn what the character means)"""
# Latency: O(dim_latent)
pass
def generate_character(self, latent_code: np.ndarray) -> np.ndarray:
"""WRITE: Latent Code → Image (learn how to express the character)"""
# Latency: O(dim_output)
pass
Compression: 784 → 64 = 12.25× compression
Expected Latency Reduction: ~12× for downstream tasks
Training latency depends on reaching Gibbs equilibrium:
Stopped Early: t < τ_mix → Poor latent representation
Fully Converged: t > τ_mix → Optimal latent representation
↓
Minimal inference latency
From fokker-planck-analyzer:
def check_convergence(trajectory, temperature):
# Mixing time from loss landscape geometry
τ_mix = 1 / λ_min(Hessian(loss))
# Check if training exceeded mixing time
if training_steps > τ_mix:
return "CONVERGED: Good latent representation"
else:
return f"EARLY STOP: Need {τ_mix - training_steps} more steps"
| Skill | Trit | Role |
|---|---|---|
fokker-planck-analyzer | -1 | Verifies convergence (latency) |
latent-latency | 0 | Mediates space ↔ time |
compression-progress | +1 | Generates compressed representations |
Conservation: (-1) + (0) + (+1) = 0 ✓
def optimize_latent_for_latency(model, target_latency_ms):
"""
Find optimal latent dimension for target latency.
Relationship: latency ∝ dim(z) / spectral_gap
"""
current_dim = model.latent_dim
current_latency = measure_latency(model)
# Target dimension
target_dim = int(current_dim * (target_latency_ms / current_latency))
# Retrain with smaller latent space
return retrain_model(model, latent_dim=target_dim)
def predict_mixing_time_from_latent(latent_structure):
"""
Estimate training latency from latent space properties.
"""
# Spectral gap of latent similarity graph
gap = spectral_gap(latent_similarity_matrix(latent_structure))
# Mixing time bound
n = latent_structure.n_samples
τ_mix = np.log(n) / gap
return τ_mix
def route_with_ramanujan(nodes, message):
"""
Route through network with optimal latency.
Ramanujan graphs achieve t_mix = O(log n).
"""
# Build routing graph with Ramanujan property
G = build_lps_graph(nodes, degree=7) # (7+1)-regular
assert spectral_gap(G) >= 7 - 2*np.sqrt(6), "Not Ramanujan!"
# Route via non-backtracking walk
path = non_backtracking_path(G, source, target)
# Expected latency: O(log n) hops
return path
From security applications:
Detection latency = O(log N) / gap
For Ramanujan (gap = 1/4):
N = 1000 nodes → detection in ~37ms
N = 1M nodes → detection in ~74ms
# Analyze latent-latency tradeoff
just latent-latency-analyze model.pt
# Optimize for target latency
just latent-optimize --target-ms=100
# Measure spectral gap of latent space
just latent-spectral-gap embeddings.npy
# Predict mixing time
just predict-mixing-time --hessian=H.npy
# Route with Ramanujan optimality
just ramanujan-route --nodes=1000
CREATE TABLE latent_latency_metrics (
model_id VARCHAR PRIMARY KEY,
latent_dim INT,
spectral_gap FLOAT,
mixing_time_estimate FLOAT,
inference_latency_ms FLOAT,
compression_ratio FLOAT,
is_converged BOOLEAN,
created_at TIMESTAMP DEFAULT NOW()
);
-- Query: find optimal models
SELECT model_id, latent_dim, inference_latency_ms
FROM latent_latency_metrics
WHERE is_converged = true
ORDER BY inference_latency_ms ASC
LIMIT 10;
fokker-planck-analyzer (-1) ⊗ latent-latency (0) ⊗ compression-progress (+1) = 0 ✓
ramanujan-expander (-1) ⊗ latent-latency (0) ⊗ agent-o-rama (+1) = 0 ✓
spi-parallel-verify (-1) ⊗ latent-latency (0) ⊗ gay-mcp (+1) = 0 ✓
fokker-planck-analyzer - Convergence verificationlangevin-dynamics - SDE-based learningramanujan-expander - Spectral gap optimizationcompression-progress - Intrinsic motivationmcp-tripartite - Energy-latency tradeoffsSkill Name: latent-latency
Type: Theoretical Bridge
Trit: 0 (ERGODIC - space ↔ time mediation)
Core Equation: τ_response = dim(z) / gap × log(1/ε)
Status: ✅ Available
This skill connects to the K-Dense-AI/claude-scientific-skills ecosystem:
general: 734 citations in bib.duckdbThis skill maps to Cat# = Comod(P) as a bicomodule in the equipment structure:
Trit: 0 (ERGODIC)
Home: Prof
Poly Op: ⊗
Kan Role: Adj
Color: #26D826
The skill participates in triads satisfying:
(-1) + (0) + (+1) ≡ 0 (mod 3)
This ensures compositional coherence in the Cat# equipment structure.