Riehl-Shulman covariant fibrations for dependent types over directed
/plugin marketplace add plurigrid/asi/plugin install asi-skills@asi-skillsThis skill inherits all available tools. When active, it can use any tool Claude has access to.
research/types22_paper37.pdfStatus: ā Production Ready Trit: -1 (MINUS - validator/constraint) Color: #2626D8 (Blue) Principle: Type families respect directed morphisms Frame: Covariant transport along 2-arrows
Covariant Fibrations are type families B : A ā U where transport goes with the direction of morphisms. In directed type theory, this ensures type families correctly propagate along the directed interval š.
For P : A ā U covariant fibration:
transport_P : (f : Hom_A(a, a')) ā P(a) ā P(a')
Covariance: transport respects composition
transport_{gāf} = transport_g ā transport_f
-- Directed type theory (Narya-style)
covariant_fibration : (A : Type) ā (P : A ā Type) ā Type
covariant_fibration A P =
(a a' : A) ā (f : Hom A a a') ā P a ā P a'
-- Transport along directed morphisms
cov-transport : {A : Type} {P : A ā Type}
ā is-covariant P
ā {a a' : A} ā Hom A a a' ā P a ā P a'
cov-transport cov f pa = cov.transport f pa
-- Functoriality
cov-comp : cov-transport (g ā f) ā” cov-transport g ā cov-transport f
-- Cocartesian lift characterizes covariant fibrations
is-cocartesian : {E B : Type} (p : E ā B)
ā {e : E} {b' : B} ā Hom B (p e) b' ā Type
is-cocartesian p {e} {b'} f =
Ī£ (e' : E), Ī£ (fĢ : Hom E e e'), (p fĢ ā” f) Ć is-initial(fĢ)
-- Covariant families over Segal types
covariant-segal : (A : Segal) ā (P : A ā Type) ā Type
covariant-segal A P =
(x y z : A) ā (f : Hom x y) ā (g : Hom y z) ā
cov-transport (g ā f) ā” cov-transport g ā cov-transport f
# Validate covariance conditions
just covariant-check fibration.rzk
# Compute cocartesian lifts
just cocartesian-lift base-morphism.rzk
# Generate transport terms
just cov-transport source target
covariant-fibrations (-1) ā directed-interval (0) ā synthetic-adjunctions (+1) = 0 ā [Transport]
covariant-fibrations (-1) ā elements-infinity-cats (0) ā rezk-types (+1) = 0 ā [ā-Fibrations]
Skill Name: covariant-fibrations Type: Directed Transport Validator Trit: -1 (MINUS) Color: #2626D8 (Blue)
This skill connects to the K-Dense-AI/claude-scientific-skills ecosystem:
homotopy-theory: 29 citations in bib.duckdbThis skill maps to Cat# = Comod(P) as a bicomodule in the equipment structure:
Trit: 0 (ERGODIC)
Home: Prof
Poly Op: ā
Kan Role: Adj
Color: #26D826
The skill participates in triads satisfying:
(-1) + (0) + (+1) ā” 0 (mod 3)
This ensures compositional coherence in the Cat# equipment structure.