EDA, dashboards, Matplotlib, Seaborn, Plotly, and BI tools. Use for creating visualizations, exploratory analysis, or dashboards.
Creates visualizations using Matplotlib, Seaborn, and Plotly for exploratory data analysis and interactive dashboards. Use when users need charts, plots, or BI-style visualizations to explore data insights.
/plugin marketplace add pluginagentmarketplace/custom-plugin-ai-data-scientist/plugin install ai-data-scientist-plugin@pluginagentmarketplace-ai-data-scientistThis skill inherits all available tools. When active, it can use any tool Claude has access to.
assets/chart_styles.yamlreferences/CHART_SELECTION_GUIDE.mdscripts/quick_plot.pyCreate compelling visualizations to explore and communicate data insights.
import matplotlib.pyplot as plt
# Line plot
plt.figure(figsize=(10, 6))
plt.plot(x, y, marker='o', linestyle='-', color='blue', label='Series 1')
plt.xlabel('X Label')
plt.ylabel('Y Label')
plt.title('Title')
plt.legend()
plt.grid(True, alpha=0.3)
plt.show()
# Bar chart
plt.bar(categories, values, color='skyblue', edgecolor='black')
plt.xlabel('Categories')
plt.ylabel('Values')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
import seaborn as sns
# Set style
sns.set_style("whitegrid")
# Distribution
sns.histplot(data=df, x='value', kde=True, bins=30)
# Box plot
sns.boxplot(data=df, x='category', y='value')
# Violin plot
sns.violinplot(data=df, x='category', y='value')
# Heatmap
corr = df.corr()
sns.heatmap(corr, annot=True, cmap='coolwarm', center=0)
# Pairplot
sns.pairplot(df, hue='target', diag_kind='kde')
# Quick overview
df.info()
df.describe()
# Missing values
df.isnull().sum()
# Value counts
df['category'].value_counts().plot(kind='bar')
# Distribution
df.hist(figsize=(12, 10), bins=30)
plt.tight_layout()
plt.show()
# Correlation matrix
plt.figure(figsize=(10, 8))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm',
center=0, square=True)
plt.title('Correlation Matrix')
plt.show()
import plotly.express as px
import plotly.graph_objects as go
# Interactive scatter
fig = px.scatter(df, x='feature1', y='target',
color='category', size='value',
hover_data=['name', 'date'],
title='Interactive Scatter Plot')
fig.show()
# Time series
fig = px.line(df, x='date', y='value', color='category',
title='Time Series')
fig.update_xaxes(rangeslider_visible=True)
fig.show()
# 3D scatter
fig = px.scatter_3d(df, x='x', y='y', z='z',
color='category', size='value')
fig.show()
import dash
from dash import dcc, html
from dash.dependencies import Input, Output
app = dash.Dash(__name__)
app.layout = html.Div([
html.H1('Sales Dashboard'),
dcc.Dropdown(
id='category-dropdown',
options=[{'label': cat, 'value': cat}
for cat in df['category'].unique()],
value=df['category'].unique()[0]
),
dcc.Graph(id='sales-graph'),
dcc.RangeSlider(
id='year-slider',
min=df['year'].min(),
max=df['year'].max(),
value=[df['year'].min(), df['year'].max()],
marks={str(year): str(year)
for year in df['year'].unique()}
)
])
@app.callback(
Output('sales-graph', 'figure'),
[Input('category-dropdown', 'value'),
Input('year-slider', 'value')]
)
def update_graph(selected_category, year_range):
filtered_df = df[
(df['category'] == selected_category) &
(df['year'] >= year_range[0]) &
(df['year'] <= year_range[1])
]
fig = px.line(filtered_df, x='date', y='sales')
return fig
if __name__ == '__main__':
app.run_server(debug=True)
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
# Top left
axes[0, 0].hist(data1, bins=30)
axes[0, 0].set_title('Histogram')
# Top right
axes[0, 1].scatter(x, y)
axes[0, 1].set_title('Scatter')
# Bottom left
axes[1, 0].plot(x, y)
axes[1, 0].set_title('Line Plot')
# Bottom right
axes[1, 1].boxplot([data1, data2, data3])
axes[1, 1].set_title('Box Plot')
plt.tight_layout()
plt.show()
Choose the right chart type:
Design principles:
Common pitfalls to avoid:
# Seaborn palettes
sns.color_palette("viridis", as_cmap=True)
sns.color_palette("coolwarm", as_cmap=True)
sns.color_palette("Set2")
# Custom colors
colors = ['#FF6B6B', '#4ECDC4', '#45B7D1', '#FFA07A']
# High-resolution PNG
plt.savefig('figure.png', dpi=300, bbox_inches='tight')
# Vector format (PDF, SVG)
plt.savefig('figure.pdf', bbox_inches='tight')
plt.savefig('figure.svg', bbox_inches='tight')
This skill should be used when the user asks to "create a slash command", "add a command", "write a custom command", "define command arguments", "use command frontmatter", "organize commands", "create command with file references", "interactive command", "use AskUserQuestion in command", or needs guidance on slash command structure, YAML frontmatter fields, dynamic arguments, bash execution in commands, user interaction patterns, or command development best practices for Claude Code.
This skill should be used when the user asks to "create an agent", "add an agent", "write a subagent", "agent frontmatter", "when to use description", "agent examples", "agent tools", "agent colors", "autonomous agent", or needs guidance on agent structure, system prompts, triggering conditions, or agent development best practices for Claude Code plugins.
This skill should be used when the user asks to "create a hook", "add a PreToolUse/PostToolUse/Stop hook", "validate tool use", "implement prompt-based hooks", "use ${CLAUDE_PLUGIN_ROOT}", "set up event-driven automation", "block dangerous commands", or mentions hook events (PreToolUse, PostToolUse, Stop, SubagentStop, SessionStart, SessionEnd, UserPromptSubmit, PreCompact, Notification). Provides comprehensive guidance for creating and implementing Claude Code plugin hooks with focus on advanced prompt-based hooks API.