Plan ML projects using CRISP-DM, TDSP, and MLOps methodologies with proper phase gates and deliverables.
Plans ML projects using CRISP-DM, TDSP, and MLOps methodologies with proper phase gates and deliverables. Use when starting ML projects to define business objectives, data requirements, modeling approaches, and deployment strategies with structured planning templates.
/plugin marketplace add melodic-software/claude-code-plugins/plugin install ai-ml-planning@melodic-softwareThis skill is limited to using the following tools:
Use this skill when:
ML project lifecycle methodologies provide structured approaches for planning, executing, and deploying machine learning systems with appropriate governance and quality gates.
┌─────────────────────────────────────────────────────────────────┐
│ CRISP-DM Cycle │
├─────────────────────────────────────────────────────────────────┤
│ │
│ ┌─────────────────────┐ │
│ │ 1. Business │ │
│ │ Understanding │ │
│ └────────┬────────────┘ │
│ │ │
│ ┌─────────────┼─────────────┐ │
│ │ ▼ │ │
│ │ ┌─────────────────────┐ │ │
│ │ │ 2. Data │ │ │
│ │ │ Understanding │ │ │
│ │ └────────┬────────────┘ │ │
│ │ │ │ │
│ │ ▼ │ │
│ │ ┌─────────────────────┐ │ │
│ │ │ 3. Data │ │ │
│ │ │ Preparation │ │ │
│ │ └────────┬────────────┘ │ │
│ │ │ │ │
│ │ ▼ │ │
│ │ ┌─────────────────────┐ │ │
│ │ │ 4. Modeling │ │ │
│ │ └────────┬────────────┘ │ │
│ │ │ │ │
│ │ ▼ │ │
│ │ ┌─────────────────────┐ │ │
│ │ │ 5. Evaluation │ │◄──── Go/No-Go Decision │
│ │ └────────┬────────────┘ │ │
│ │ │ │ │
│ └───────────┼───────────────┘ │
│ ▼ │
│ ┌─────────────────────┐ │
│ │ 6. Deployment │ │
│ └─────────────────────┘ │
│ │
└─────────────────────────────────────────────────────────────────┘
| Phase | Key Activities | Deliverables |
|---|---|---|
| Business Understanding | Define objectives, success criteria | Business requirements doc |
| Data Understanding | Explore, describe, verify data | Data quality report |
| Data Preparation | Clean, transform, feature engineer | Training datasets |
| Modeling | Select algorithms, train, tune | Model artifacts, metrics |
| Evaluation | Assess model, review process | Evaluation report |
| Deployment | Deploy, monitor, maintain | Production system |
| Level | Description | Characteristics |
|---|---|---|
| 0 | Manual | No automation, ad-hoc experiments |
| 1 | ML Pipeline | Automated training, manual deployment |
| 2 | CI/CD Pipeline | Automated training and deployment |
| 3 | Full MLOps | Automated monitoring, retraining |
┌─────────────────────────────────────────────────────────────────┐
│ MLOps Architecture │
├─────────────────────────────────────────────────────────────────┤
│ │
│ ┌────────────┐ ┌────────────┐ ┌────────────┐ │
│ │ Data │ │ Feature │ │ Model │ │
│ │ Pipeline │──►│ Store │──►│ Training │ │
│ └────────────┘ └────────────┘ └─────┬──────┘ │
│ │ │
│ ┌────────────┐ ┌────────────┐ ┌─────▼──────┐ │
│ │ Monitoring │◄──│ Model │◄──│ Model │ │
│ │ & Alerts │ │ Serving │ │ Registry │ │
│ └────────────┘ └────────────┘ └────────────┘ │
│ │
│ ┌─────────────────────────────────────────────────────────┐ │
│ │ Experiment Tracking & Versioning │ │
│ └─────────────────────────────────────────────────────────┘ │
│ │
└─────────────────────────────────────────────────────────────────┘
# ML Project Plan: [Project Name]
## 1. Business Understanding
### Objectives
- Primary goal: [What business problem are we solving?]
- Success metrics: [How will we measure success?]
- Stakeholders: [Who will use/be affected by this?]
### Constraints
- Timeline: [Project duration]
- Resources: [Team, compute, budget]
- Data availability: [What data do we have access to?]
## 2. Data Understanding
### Data Sources
| Source | Type | Volume | Refresh |
|--------|------|--------|---------|
| [Source 1] | [Type] | [Size] | [Frequency] |
### Data Quality Assessment
- Completeness: [% complete]
- Accuracy: [Validation approach]
- Timeliness: [Data freshness]
## 3. Data Preparation
### Feature Engineering Plan
| Feature | Source | Transformation | Rationale |
|---------|--------|----------------|-----------|
| [Feature 1] | [Column] | [Transform] | [Why] |
### Data Pipeline
- Extraction: [Method]
- Transformation: [Tools/approach]
- Loading: [Destination]
## 4. Modeling Approach
### Algorithm Selection
| Algorithm | Pros | Cons | Priority |
|-----------|------|------|----------|
| [Algorithm 1] | [Pros] | [Cons] | [1-3] |
### Experimentation Plan
- Baseline: [Simple model for comparison]
- Iterations: [Planned experiments]
- Hyperparameter strategy: [Grid/random/bayesian]
## 5. Evaluation Criteria
### Metrics
| Metric | Target | Baseline | Importance |
|--------|--------|----------|------------|
| [Metric 1] | [Target] | [Current] | [High/Med/Low] |
### Go/No-Go Criteria
- Minimum performance: [Threshold]
- Business validation: [Process]
## 6. Deployment Plan
### Serving Architecture
- Inference type: [Real-time/Batch]
- Infrastructure: [Cloud/Edge]
- Scaling: [Strategy]
### Monitoring
- Metrics: [What to track]
- Alerts: [Thresholds]
- Retraining: [Trigger conditions]
| Category | Items to Track |
|---|---|
| Parameters | Hyperparameters, configs |
| Metrics | Loss, accuracy, custom |
| Artifacts | Models, plots, data |
| Environment | Dependencies, hardware |
| Code | Git commit, branch |
// Semantic Kernel with experiment tracking
public class ExperimentTracker
{
public async Task TrackExperiment(
string experimentName,
Func<Task<ExperimentResult>> experiment)
{
var runId = Guid.NewGuid().ToString();
var startTime = DateTime.UtcNow;
try
{
// Log parameters
await LogParameters(runId, new Dictionary<string, object>
{
["model"] = "gpt-4o",
["temperature"] = 0.7,
["max_tokens"] = 1000
});
// Run experiment
var result = await experiment();
// Log metrics
await LogMetrics(runId, new Dictionary<string, double>
{
["accuracy"] = result.Accuracy,
["latency_ms"] = result.LatencyMs,
["token_cost"] = result.TokenCost
});
// Log artifacts
await LogArtifact(runId, "prompt.txt", result.Prompt);
await LogArtifact(runId, "response.json", result.Response);
}
finally
{
var duration = DateTime.UtcNow - startTime;
await LogMetric(runId, "duration_seconds", duration.TotalSeconds);
}
}
}
# Model Registry Entry
## Model: customer-churn-predictor
### Versions
| Version | Stage | Created | Metrics | Notes |
|---------|-------|---------|---------|-------|
| v1.0.0 | Production | 2024-01-15 | AUC: 0.85 | Baseline |
| v1.1.0 | Staging | 2024-02-01 | AUC: 0.88 | New features |
| v1.2.0 | Development | 2024-02-15 | AUC: 0.89 | Tuned |
### Promotion Criteria
- [ ] Performance >= baseline + 2%
- [ ] No regression on fairness metrics
- [ ] A/B test shows positive lift
- [ ] Stakeholder approval
Inputs from:
Outputs to:
model-selection skill → Algorithm choicesai-safety-planning skill → Safety requirementstoken-budgeting skill → Cost estimationThis skill should be used when the user asks to "create a slash command", "add a command", "write a custom command", "define command arguments", "use command frontmatter", "organize commands", "create command with file references", "interactive command", "use AskUserQuestion in command", or needs guidance on slash command structure, YAML frontmatter fields, dynamic arguments, bash execution in commands, user interaction patterns, or command development best practices for Claude Code.
This skill should be used when the user asks to "create an agent", "add an agent", "write a subagent", "agent frontmatter", "when to use description", "agent examples", "agent tools", "agent colors", "autonomous agent", or needs guidance on agent structure, system prompts, triggering conditions, or agent development best practices for Claude Code plugins.
This skill should be used when the user asks to "create a hook", "add a PreToolUse/PostToolUse/Stop hook", "validate tool use", "implement prompt-based hooks", "use ${CLAUDE_PLUGIN_ROOT}", "set up event-driven automation", "block dangerous commands", or mentions hook events (PreToolUse, PostToolUse, Stop, SubagentStop, SessionStart, SessionEnd, UserPromptSubmit, PreCompact, Notification). Provides comprehensive guidance for creating and implementing Claude Code plugin hooks with focus on advanced prompt-based hooks API.