Market data retrieval with OpenAlgo - real-time quotes, historical OHLCV, market depth, option chains, WebSocket streaming, and symbol search
Fetch real-time quotes, historical OHLCV, market depth, and option chains using OpenAlgo. Use when users request live prices, historical data, or option chain details for specific symbols.
/plugin marketplace add marketcalls/openalgo-claude-plugin/plugin install marketcalls-openalgo-python-plugins-openalgo-python@marketcalls/openalgo-claude-pluginThis skill inherits all available tools. When active, it can use any tool Claude has access to.
requirements.txtscripts/history.pyscripts/quotes.pyscripts/stream.pyAccess real-time and historical market data using OpenAlgo's unified Python SDK. Supports REST API for on-demand data and WebSocket for real-time streaming.
from openalgo import api
# REST API only
client = api(
api_key='your_api_key_here',
host='http://127.0.0.1:5000'
)
# With WebSocket streaming
client = api(
api_key='your_api_key_here',
host='http://127.0.0.1:5000',
ws_url='ws://127.0.0.1:8765',
verbose=True # Enable connection logs
)
python scripts/quotes.py --symbol RELIANCE --exchange NSE
python scripts/quotes.py --symbols RELIANCE,TCS,INFY --exchange NSE
python scripts/history.py --symbol SBIN --exchange NSE --interval 5m --start 2025-01-01 --end 2025-01-15
python scripts/depth.py --symbol SBIN --exchange NSE
python scripts/stream.py --symbols NIFTY,BANKNIFTY --exchange NSE_INDEX --mode ltp
Get current market quote for a symbol:
response = client.quotes(symbol="RELIANCE", exchange="NSE")
Response:
{
"status": "success",
"data": {
"open": 1172.0,
"high": 1196.6,
"low": 1163.3,
"ltp": 1187.75,
"ask": 1188.0,
"bid": 1187.85,
"prev_close": 1165.7,
"volume": 14414545
}
}
Get quotes for multiple symbols in one call:
response = client.multiquotes(symbols=[
{"symbol": "RELIANCE", "exchange": "NSE"},
{"symbol": "TCS", "exchange": "NSE"},
{"symbol": "INFY", "exchange": "NSE"},
{"symbol": "NIFTY", "exchange": "NSE_INDEX"}
])
Response:
{
"status": "success",
"results": [
{
"symbol": "RELIANCE",
"exchange": "NSE",
"data": {
"open": 1542.3,
"high": 1571.6,
"low": 1540.5,
"ltp": 1569.9,
"prev_close": 1539.7,
"ask": 1569.9,
"bid": 1569.8,
"oi": 0,
"volume": 14054299
}
},
...
]
}
Get order book with 5 best bid/ask levels:
response = client.depth(symbol="SBIN", exchange="NSE")
Response:
{
"status": "success",
"data": {
"open": 760.0,
"high": 774.0,
"low": 758.15,
"ltp": 769.6,
"ltq": 205,
"prev_close": 746.9,
"volume": 9362799,
"oi": 161265750,
"totalbuyqty": 591351,
"totalsellqty": 835701,
"asks": [
{"price": 769.6, "quantity": 767},
{"price": 769.65, "quantity": 115},
{"price": 769.7, "quantity": 162},
{"price": 769.75, "quantity": 1121},
{"price": 769.8, "quantity": 430}
],
"bids": [
{"price": 769.4, "quantity": 886},
{"price": 769.35, "quantity": 212},
{"price": 769.3, "quantity": 351},
{"price": 769.25, "quantity": 343},
{"price": 769.2, "quantity": 399}
]
}
}
Get historical candlestick data:
response = client.history(
symbol="SBIN",
exchange="NSE",
interval="5m",
start_date="2025-01-01",
end_date="2025-01-15"
)
Response (Pandas DataFrame):
close high low open volume
timestamp
2025-01-01 09:15:00+05:30 772.50 774.00 763.20 766.50 318625
2025-01-01 09:20:00+05:30 773.20 774.95 772.10 772.45 197189
2025-01-01 09:25:00+05:30 775.15 775.60 772.60 773.20 227544
...
Available Intervals:
response = client.intervals()
# Returns: {'minutes': ['1m', '3m', '5m', '10m', '15m', '30m'],
# 'hours': ['1h'], 'days': ['D']}
Get complete option chain for an underlying:
chain = client.optionchain(
underlying="NIFTY",
exchange="NSE_INDEX",
expiry_date="30JAN25",
strike_count=10 # ±10 strikes from ATM (optional)
)
Response:
{
"status": "success",
"underlying": "NIFTY",
"underlying_ltp": 26215.55,
"expiry_date": "30JAN25",
"atm_strike": 26200.0,
"chain": [
{
"strike": 26100.0,
"ce": {
"symbol": "NIFTY30JAN2526100CE",
"label": "ITM2",
"ltp": 490,
"bid": 490,
"ask": 491,
"volume": 1195800,
"oi": 5000000,
"lotsize": 75
},
"pe": {
"symbol": "NIFTY30JAN2526100PE",
"label": "OTM2",
"ltp": 193,
"bid": 191.2,
"ask": 193,
"volume": 1832700,
"oi": 4500000,
"lotsize": 75
}
},
...
]
}
Get available expiry dates:
response = client.expiry(
symbol="NIFTY",
exchange="NFO",
instrumenttype="options" # or "futures"
)
# Returns: ['30-JAN-25', '06-FEB-25', '13-FEB-25', ...]
response = client.search(query="NIFTY 26000 JAN CE", exchange="NFO")
Response:
{
"status": "success",
"message": "Found 7 matching symbols",
"data": [
{
"symbol": "NIFTY30JAN2526000CE",
"exchange": "NFO",
"expiry": "30-JAN-25",
"strike": 26000,
"instrumenttype": "CE",
"lotsize": 75
},
...
]
}
response = client.symbol(symbol="NIFTY30JAN25FUT", exchange="NFO")
Response:
{
"status": "success",
"data": {
"symbol": "NIFTY30JAN25FUT",
"exchange": "NFO",
"name": "NIFTY",
"expiry": "30-JAN-25",
"instrumenttype": "FUT",
"lotsize": 75,
"freeze_qty": 1800,
"tick_size": 10
}
}
Download complete instrument list for an exchange:
instruments = client.instruments(exchange="NSE")
# Returns Pandas DataFrame with all symbols
from openalgo import api
import time
client = api(
api_key='your_api_key',
host='http://127.0.0.1:5000',
ws_url='ws://127.0.0.1:8765',
verbose=True # Show connection logs
)
# Connect to WebSocket
client.connect()
| Level | Value | Description |
|---|---|---|
| Silent | False or 0 | Errors only (default) |
| Basic | True or 1 | Connection, auth, subscription logs |
| Debug | 2 | All market data updates |
instruments = [
{"exchange": "NSE", "symbol": "RELIANCE"},
{"exchange": "NSE", "symbol": "INFY"},
{"exchange": "NSE_INDEX", "symbol": "NIFTY"}
]
def on_ltp(data):
print(f"{data['symbol']}: {data['data']['ltp']}")
client.subscribe_ltp(instruments, on_data_received=on_ltp)
# Run for 60 seconds
time.sleep(60)
# Cleanup
client.unsubscribe_ltp(instruments)
client.disconnect()
def on_quote(data):
d = data['data']
print(f"{data['symbol']}: O={d['open']} H={d['high']} L={d['low']} LTP={d['ltp']}")
client.subscribe_quote(instruments, on_data_received=on_quote)
def on_depth(data):
d = data['data']
print(f"{data['symbol']}: Best Bid={d['bids'][0]['price']} Best Ask={d['asks'][0]['price']}")
client.subscribe_depth(instruments, on_data_received=on_depth)
Access latest cached data without callback:
# After subscribing
ltp_data = client.get_ltp()
quote_data = client.get_quotes()
depth_data = client.get_depth()
# Access specific symbol
nifty_ltp = ltp_data['ltp']['NSE_INDEX']['NIFTY']['ltp']
response = client.holidays(year=2025)
Response:
{
"data": [
{
"date": "2025-01-26",
"description": "Republic Day",
"holiday_type": "TRADING_HOLIDAY",
"closed_exchanges": ["NSE", "BSE", "NFO", "MCX"]
},
...
]
}
response = client.timings(date="2025-01-15")
Response:
{
"data": [
{"exchange": "NSE", "start_time": 1705293300000, "end_time": 1705315800000},
{"exchange": "BSE", "start_time": 1705293300000, "end_time": 1705315800000},
{"exchange": "MCX", "start_time": 1705293000000, "end_time": 1705346700000}
]
}
watchlist = [
{"symbol": "NIFTY", "exchange": "NSE_INDEX"},
{"symbol": "BANKNIFTY", "exchange": "NSE_INDEX"},
{"symbol": "RELIANCE", "exchange": "NSE"},
{"symbol": "HDFCBANK", "exchange": "NSE"},
{"symbol": "INFY", "exchange": "NSE"}
]
quotes = client.multiquotes(symbols=watchlist)
for item in quotes.get('results', []):
data = item.get('data', {})
change = ((data['ltp'] - data['prev_close']) / data['prev_close']) * 100
print(f"{item['symbol']}: {data['ltp']} ({change:+.2f}%)")
from datetime import date
today = date.today().strftime("%Y-%m-%d")
intraday = client.history(
symbol="NIFTY",
exchange="NSE_INDEX",
interval="1m",
start_date=today,
end_date=today
)
print(f"Today's range: High={intraday['high'].max()}, Low={intraday['low'].min()}")
import time
while True:
chain = client.optionchain(
underlying="NIFTY",
exchange="NSE_INDEX",
expiry_date="30JAN25",
strike_count=5
)
atm = chain.get('atm_strike')
print(f"\nNIFTY ATM: {atm}, LTP: {chain.get('underlying_ltp')}")
for strike in chain.get('chain', []):
if strike['strike'] == atm:
ce = strike['ce']
pe = strike['pe']
print(f" CE: {ce['ltp']} (Vol: {ce['volume']})")
print(f" PE: {pe['ltp']} (Vol: {pe['volume']})")
time.sleep(5)
verbose=2 for debugging WebSocket issuesUse when working with Payload CMS projects (payload.config.ts, collections, fields, hooks, access control, Payload API). Use when debugging validation errors, security issues, relationship queries, transactions, or hook behavior.