Debug Python errors, exceptions, and unexpected behavior. Analyzes tracebacks, reproduces issues, identifies root causes, and provides fixes.
Diagnoses Python errors by analyzing tracebacks, reproducing issues, and identifying root causes. Triggers when encountering Python exceptions, tracebacks, or unexpected behavior in code.
/plugin marketplace add majesticlabs-dev/majestic-marketplace/plugin install majestic-tools@majestic-marketplaceThis skill is limited to using the following tools:
You are a Python Debugging Expert who systematically diagnoses and fixes Python errors, exceptions, and unexpected behavior.
1. Understand the Error → 2. Reproduce → 3. Isolate → 4. Identify Root Cause → 5. Fix → 6. Verify
Traceback (most recent call last): ← Read bottom to top
File "app.py", line 45, in main ← Entry point
result = process_data(data) ← Call chain
File "processor.py", line 23, in process_data
return transform(item) ← Getting closer
File "transformer.py", line 12, in transform
return item["value"] / item["count"] ← Error location
ZeroDivisionError: division by zero ← The actual error
| Error | Typical Cause | First Check |
|---|---|---|
AttributeError | Wrong type, None value | Print type and value |
KeyError | Missing dict key | Check dict keys |
TypeError | Wrong argument type | Check function signature |
ValueError | Right type, wrong value | Validate input ranges |
ImportError | Missing module/path | Check installed packages |
IndexError | List access out of bounds | Check list length |
ZeroDivisionError | Division by zero | Add zero check |
FileNotFoundError | Wrong path | Print absolute path |
# Create minimal test case that triggers the error
def test_reproduces_error():
# Exact inputs that cause the failure
data = {"value": 10, "count": 0} # The problematic input
# Call the failing function
result = transform(data) # Should raise ZeroDivisionError
Questions to answer:
def process_data(data):
print(f"DEBUG: data type = {type(data)}")
print(f"DEBUG: data = {data}")
for i, item in enumerate(data):
print(f"DEBUG: processing item {i}: {item}")
result = transform(item)
print(f"DEBUG: result = {result}")
return results
import pdb
def problematic_function(x):
pdb.set_trace() # Execution stops here
# Or use: breakpoint() # Python 3.7+
result = x * 2
return result
pdb Commands:
| Command | Action |
|---|---|
n | Next line |
s | Step into function |
c | Continue execution |
p var | Print variable |
pp var | Pretty print |
l | List source code |
w | Show call stack |
q | Quit debugger |
from icecream import ic
def calculate(x, y):
ic(x, y) # Prints: ic| x: 5, y: 0
result = x / y
ic(result)
return result
# Problem
user = get_user(user_id) # Returns None if not found
name = user.name # AttributeError: 'NoneType' has no attribute 'name'
# Fix
user = get_user(user_id)
if user is None:
raise ValueError(f"User {user_id} not found")
name = user.name
# Problem
def add_numbers(a, b):
return a + b
add_numbers("5", 3) # TypeError: can only concatenate str to str
# Fix
def add_numbers(a: int, b: int) -> int:
return int(a) + int(b)
# Problem - shared list across calls!
def append_to(item, target=[]):
target.append(item)
return target
# Fix
def append_to(item, target=None):
if target is None:
target = []
target.append(item)
return target
# Problem: a.py imports b.py, b.py imports a.py
# Fix: Import inside function or restructure
def get_processor():
from .processor import Processor # Lazy import
return Processor()
# Problem: Forgetting await
async def fetch_data():
result = fetch_from_api() # Missing await!
return result # Returns coroutine, not result
# Fix
async def fetch_data():
result = await fetch_from_api()
return result
def safe_divide(a, b):
if b == 0:
raise ValueError("Cannot divide by zero")
return a / b
def safe_get(data: dict, key: str, default=None):
return data.get(key, default)
def process_user(user_id: int, data: dict) -> dict:
if not isinstance(user_id, int) or user_id <= 0:
raise ValueError(f"Invalid user_id: {user_id}")
required_fields = ["name", "email"]
missing = [f for f in required_fields if f not in data]
if missing:
raise ValueError(f"Missing required fields: {missing}")
# Process...
import logging
logger = logging.getLogger(__name__)
def fetch_user_data(user_id: int) -> dict:
try:
response = api_client.get(f"/users/{user_id}")
response.raise_for_status()
return response.json()
except requests.HTTPError as e:
logger.error(f"HTTP error fetching user {user_id}: {e}")
raise
except requests.ConnectionError:
logger.error(f"Connection failed for user {user_id}")
raise ServiceUnavailableError("API unavailable")
import pytest
def test_transform_handles_zero_count():
"""Verify fix for ZeroDivisionError."""
data = {"value": 10, "count": 0}
with pytest.raises(ValueError, match="count cannot be zero"):
transform(data)
def test_transform_normal_case():
"""Verify normal operation still works."""
data = {"value": 10, "count": 2}
result = transform(data)
assert result == 5
import logging
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s %(name)s %(levelname)s: %(message)s",
handlers=[
logging.FileHandler("debug.log"),
logging.StreamHandler(),
],
)
logger = logging.getLogger(__name__)
def process(data):
logger.debug(f"Processing data: {data}")
try:
result = transform(data)
logger.info(f"Success: {result}")
return result
except Exception as e:
logger.exception(f"Failed to process: {e}")
raise
# Time profiling
import cProfile
cProfile.run("main()", "output.prof")
# Memory profiling
from memory_profiler import profile
@profile
def memory_heavy_function():
# ...
from rich import print
from rich.traceback import install
install(show_locals=True) # Enhanced tracebacks
print({"data": data, "result": result}) # Pretty printing
This skill should be used when the user asks to "create a slash command", "add a command", "write a custom command", "define command arguments", "use command frontmatter", "organize commands", "create command with file references", "interactive command", "use AskUserQuestion in command", or needs guidance on slash command structure, YAML frontmatter fields, dynamic arguments, bash execution in commands, user interaction patterns, or command development best practices for Claude Code.
This skill should be used when the user asks to "create an agent", "add an agent", "write a subagent", "agent frontmatter", "when to use description", "agent examples", "agent tools", "agent colors", "autonomous agent", or needs guidance on agent structure, system prompts, triggering conditions, or agent development best practices for Claude Code plugins.
This skill should be used when the user asks to "create a hook", "add a PreToolUse/PostToolUse/Stop hook", "validate tool use", "implement prompt-based hooks", "use ${CLAUDE_PLUGIN_ROOT}", "set up event-driven automation", "block dangerous commands", or mentions hook events (PreToolUse, PostToolUse, Stop, SubagentStop, SessionStart, SessionEnd, UserPromptSubmit, PreCompact, Notification). Provides comprehensive guidance for creating and implementing Claude Code plugin hooks with focus on advanced prompt-based hooks API.