dbt (data build tool) patterns for model organization, incremental strategies, and testing.
Provides dbt project structure, model patterns (staging/intermediate/marts), incremental strategies, and testing conventions. Claude uses this when you're building or refactoring dbt models and need guidance on layering, configuration, or best practices.
/plugin marketplace add majesticlabs-dev/majestic-marketplace/plugin install majestic-data@majestic-marketplaceThis skill is limited to using the following tools:
Patterns for dbt (data build tool) transform layer development.
my_dbt_project/
├── dbt_project.yml
├── profiles.yml
├── models/
│ ├── staging/ # 1:1 with sources, light transforms
│ │ ├── stg_orders.sql
│ │ └── _staging.yml
│ ├── intermediate/ # Joins, business logic
│ │ └── int_orders_enriched.sql
│ └── marts/ # Final consumption layer
│ ├── finance/
│ │ └── fct_revenue.sql
│ └── marketing/
│ └── dim_customers.sql
├── seeds/ # Static lookup data
├── snapshots/ # SCD Type 2
├── macros/ # Reusable SQL
└── tests/ # Custom tests
name: 'my_project'
version: '1.0.0'
config-version: 2
profile: 'my_project'
model-paths: ["models"]
seed-paths: ["seeds"]
test-paths: ["tests"]
macro-paths: ["macros"]
snapshot-paths: ["snapshots"]
models:
my_project:
staging:
+materialized: view
+schema: staging
intermediate:
+materialized: ephemeral
marts:
+materialized: table
+schema: marts
-- models/staging/stg_orders.sql
-- Naming: stg_<source>_<entity>
with source as (
select * from {{ source('raw', 'orders') }}
),
renamed as (
select
-- Rename to consistent naming
id as order_id,
customer_id,
order_date,
total_amount as order_total,
-- Type casting
cast(status as varchar(50)) as order_status,
-- Timestamps
created_at,
updated_at
from source
)
select * from renamed
# models/staging/_sources.yml
version: 2
sources:
- name: raw
database: raw_db
schema: public
freshness:
warn_after: {count: 12, period: hour}
error_after: {count: 24, period: hour}
tables:
- name: orders
identifier: orders_table
columns:
- name: id
tests:
- unique
- not_null
- name: customers
-- models/intermediate/int_orders_enriched.sql
-- Join staging models, apply business logic
with orders as (
select * from {{ ref('stg_orders') }}
),
customers as (
select * from {{ ref('stg_customers') }}
),
products as (
select * from {{ ref('stg_products') }}
)
select
o.order_id,
o.order_date,
o.order_total,
c.customer_id,
c.customer_name,
c.customer_segment,
-- Business logic
case
when o.order_total >= 1000 then 'high_value'
when o.order_total >= 100 then 'medium_value'
else 'low_value'
end as order_tier
from orders o
left join customers c on o.customer_id = c.customer_id
-- models/marts/finance/fct_revenue.sql
-- Final aggregated fact table
{{ config(
materialized='table',
partition_by={
"field": "order_date",
"data_type": "date",
"granularity": "month"
}
) }}
with orders as (
select * from {{ ref('int_orders_enriched') }}
)
select
date_trunc('day', order_date) as revenue_date,
customer_segment,
order_tier,
count(*) as order_count,
sum(order_total) as total_revenue,
avg(order_total) as avg_order_value
from orders
group by 1, 2, 3
-- models/marts/fct_events.sql
{{ config(
materialized='incremental',
unique_key='event_id',
incremental_strategy='merge' -- or 'delete+insert', 'append'
) }}
select
event_id,
user_id,
event_type,
event_timestamp,
properties
from {{ source('raw', 'events') }}
{% if is_incremental() %}
-- Only new/updated rows since last run
where event_timestamp > (select max(event_timestamp) from {{ this }})
{% endif %}
-- snapshots/snap_customers.sql
{% snapshot snap_customers %}
{{
config(
target_schema='snapshots',
unique_key='customer_id',
strategy='timestamp',
updated_at='updated_at',
)
}}
select * from {{ source('raw', 'customers') }}
{% endsnapshot %}
# models/marts/_schema.yml
version: 2
models:
- name: fct_revenue
description: Daily revenue aggregations
columns:
- name: revenue_date
tests:
- not_null
- name: total_revenue
tests:
- not_null
- dbt_utils.accepted_range:
min_value: 0
tests:
# Model-level tests
- dbt_utils.unique_combination_of_columns:
combination_of_columns:
- revenue_date
- customer_segment
- order_tier
-- tests/assert_positive_revenue.sql
-- Returns rows that fail the test
select
revenue_date,
total_revenue
from {{ ref('fct_revenue') }}
where total_revenue < 0
-- macros/cents_to_dollars.sql
{% macro cents_to_dollars(column_name) %}
round({{ column_name }} / 100.0, 2)
{% endmacro %}
-- Usage in model:
-- select {{ cents_to_dollars('amount_cents') }} as amount_dollars
-- macros/generate_schema_name.sql
{% macro generate_schema_name(custom_schema_name, node) %}
{% if custom_schema_name %}
{{ custom_schema_name }}
{% else %}
{{ target.schema }}
{% endif %}
{% endmacro %}
# Run all models
dbt run
# Run specific model and dependencies
dbt run --select fct_revenue+
# Run models with tag
dbt run --select tag:finance
# Test all
dbt test
# Generate docs
dbt docs generate
dbt docs serve
# Freshness check
dbt source freshness
# Full refresh of incremental
dbt run --full-refresh --select fct_events
# Build (run + test)
dbt build
# 1. Use ref() for model references
# BAD: select * from schema.stg_orders
# GOOD: select * from {{ ref('stg_orders') }}
# 2. Use source() for raw tables
# BAD: select * from raw_db.orders
# GOOD: select * from {{ source('raw', 'orders') }}
# 3. Document models
models:
- name: fct_revenue
description: |
Daily revenue by segment. Grain: one row per day/segment/tier.
Updated daily by the finance_dag.
meta:
owner: data-team
pii: false
# packages.yml
packages:
- package: dbt-labs/dbt_utils
version: 1.1.1
- package: dbt-labs/codegen
version: 0.12.1
- package: calogica/dbt_expectations
version: 0.10.1
# Install packages
dbt deps
Use when working with Payload CMS projects (payload.config.ts, collections, fields, hooks, access control, Payload API). Use when debugging validation errors, security issues, relationship queries, transactions, or hook behavior.
Applies Anthropic's official brand colors and typography to any sort of artifact that may benefit from having Anthropic's look-and-feel. Use it when brand colors or style guidelines, visual formatting, or company design standards apply.
Creating algorithmic art using p5.js with seeded randomness and interactive parameter exploration. Use this when users request creating art using code, generative art, algorithmic art, flow fields, or particle systems. Create original algorithmic art rather than copying existing artists' work to avoid copyright violations.