This skill should be used when the user asks to "create MongoDB model", "define Beanie document", "write MongoDB query", "create aggregation pipeline", "run database migration", "index MongoDB collection", or mentions Beanie, Motor, MongoDB documents, or async database operations. Provides MongoDB/Beanie ODM patterns for FastAPI.
/plugin marketplace add Lobbi-Docs/claude/plugin install fastapi-backend@claude-orchestrationThis skill inherits all available tools. When active, it can use any tool Claude has access to.
This skill provides patterns for MongoDB integration using Beanie ODM with async Motor driver, optimized for FastAPI applications.
from beanie import init_beanie
from motor.motor_asyncio import AsyncIOMotorClient
from app.domains.users.models import User
from app.domains.products.models import Product
async def init_database(settings: Settings):
client = AsyncIOMotorClient(settings.mongodb_url)
await init_beanie(
database=client[settings.database_name],
document_models=[
User,
Product,
# Add all document models
]
)
from pydantic_settings import BaseSettings
class Settings(BaseSettings):
mongodb_url: str = "mongodb://localhost:27017"
database_name: str = "app_db"
class Config:
env_file = ".env"
from beanie import Document, Indexed
from pydantic import Field, EmailStr
from datetime import datetime
from typing import Optional
class User(Document):
email: Indexed(EmailStr, unique=True)
name: str
hashed_password: str
is_active: bool = True
created_at: datetime = Field(default_factory=datetime.utcnow)
updated_at: datetime = Field(default_factory=datetime.utcnow)
class Settings:
name = "users" # Collection name
use_state_management = True
class Config:
json_schema_extra = {
"example": {
"email": "user@example.com",
"name": "John Doe"
}
}
from beanie import Document, Link, BackLink
from typing import List, Optional
class Author(Document):
name: str
books: List[BackLink["Book"]] = Field(original_field="author")
class Settings:
name = "authors"
class Book(Document):
title: str
author: Link[Author]
categories: List[Link["Category"]] = []
class Settings:
name = "books"
class Category(Document):
name: str
books: List[BackLink[Book]] = Field(original_field="categories")
class Settings:
name = "categories"
from beanie import Document
from pydantic import BaseModel
from typing import List
class Address(BaseModel):
street: str
city: str
country: str
postal_code: str
class Contact(BaseModel):
type: str # "email", "phone"
value: str
is_primary: bool = False
class Customer(Document):
name: str
addresses: List[Address] = []
contacts: List[Contact] = []
class Settings:
name = "customers"
# Create
user = User(email="user@example.com", name="John")
await user.insert()
# Create with validation
user = await User.insert_one(
User(email="user@example.com", name="John")
)
# Read by ID
user = await User.get(user_id)
# Read with filter
users = await User.find(User.is_active == True).to_list()
# Update
user.name = "Jane"
await user.save()
# Partial update
await user.set({User.name: "Jane", User.updated_at: datetime.utcnow()})
# Delete
await user.delete()
from beanie.operators import In, RegEx, And, Or
# Find with operators
active_users = await User.find(
And(
User.is_active == True,
User.created_at >= start_date
)
).to_list()
# Regex search
users = await User.find(
RegEx(User.name, "^John", options="i")
).to_list()
# In operator
users = await User.find(
In(User.email, ["a@test.com", "b@test.com"])
).to_list()
# Pagination
users = await User.find_all().skip(20).limit(10).to_list()
# Sorting
users = await User.find_all().sort(-User.created_at).to_list()
# Projection (select specific fields)
users = await User.find_all().project(UserSummary).to_list()
from beanie import PydanticObjectId
class UserStats(BaseModel):
total_users: int
active_users: int
avg_age: float
# Aggregation pipeline
pipeline = [
{"$match": {"is_active": True}},
{"$group": {
"_id": None,
"total": {"$sum": 1},
"avg_age": {"$avg": "$age"}
}}
]
result = await User.aggregate(pipeline).to_list()
# Using Beanie aggregation
from beanie.odm.queries.aggregation import AggregationQuery
stats = await User.find(User.is_active == True).aggregate([
{"$group": {
"_id": "$department",
"count": {"$sum": 1}
}}
]).to_list()
from beanie import Document, Indexed
from pymongo import IndexModel, ASCENDING, DESCENDING, TEXT
class Product(Document):
# Single field index
sku: Indexed(str, unique=True)
# Compound index defined in Settings
name: str
category: str
price: float
description: str
class Settings:
name = "products"
indexes = [
# Compound index
IndexModel(
[("category", ASCENDING), ("price", DESCENDING)],
name="category_price_idx"
),
# Text index
IndexModel(
[("name", TEXT), ("description", TEXT)],
name="search_idx"
),
# TTL index
IndexModel(
[("expires_at", ASCENDING)],
expireAfterSeconds=0,
name="ttl_idx"
)
]
from beanie import Document
from motor.motor_asyncio import AsyncIOMotorClientSession
async def transfer_funds(
from_account_id: str,
to_account_id: str,
amount: float,
session: AsyncIOMotorClientSession
):
async with await session.start_transaction():
from_account = await Account.get(from_account_id, session=session)
to_account = await Account.get(to_account_id, session=session)
if from_account.balance < amount:
raise ValueError("Insufficient funds")
await from_account.set(
{Account.balance: from_account.balance - amount},
session=session
)
await to_account.set(
{Account.balance: to_account.balance + amount},
session=session
)
from typing import List, Optional
from beanie import PydanticObjectId
class UserService:
async def get_by_id(self, user_id: str) -> Optional[User]:
return await User.get(PydanticObjectId(user_id))
async def get_by_email(self, email: str) -> Optional[User]:
return await User.find_one(User.email == email)
async def get_all(
self,
skip: int = 0,
limit: int = 100,
is_active: Optional[bool] = None
) -> List[User]:
query = User.find_all()
if is_active is not None:
query = User.find(User.is_active == is_active)
return await query.skip(skip).limit(limit).to_list()
async def create(self, data: UserCreate) -> User:
user = User(**data.model_dump())
await user.insert()
return user
async def update(self, user_id: str, data: UserUpdate) -> Optional[User]:
user = await self.get_by_id(user_id)
if not user:
return None
update_data = data.model_dump(exclude_unset=True)
update_data["updated_at"] = datetime.utcnow()
await user.set(update_data)
return user
For detailed patterns and migration guides:
references/migrations.md - Database migration strategiesreferences/performance.md - Query optimization tipsreferences/relationships.md - Link and BackLink patternsWorking examples in examples/:
examples/document_models.py - Complete document definitionsexamples/aggregations.py - Aggregation pipeline examplesexamples/service.py - Service layer implementationThis skill should be used when the user asks to "create an agent", "add an agent", "write a subagent", "agent frontmatter", "when to use description", "agent examples", "agent tools", "agent colors", "autonomous agent", or needs guidance on agent structure, system prompts, triggering conditions, or agent development best practices for Claude Code plugins.
This skill should be used when the user asks to "create a slash command", "add a command", "write a custom command", "define command arguments", "use command frontmatter", "organize commands", "create command with file references", "interactive command", "use AskUserQuestion in command", or needs guidance on slash command structure, YAML frontmatter fields, dynamic arguments, bash execution in commands, user interaction patterns, or command development best practices for Claude Code.
This skill should be used when the user asks to "create a hook", "add a PreToolUse/PostToolUse/Stop hook", "validate tool use", "implement prompt-based hooks", "use ${CLAUDE_PLUGIN_ROOT}", "set up event-driven automation", "block dangerous commands", or mentions hook events (PreToolUse, PostToolUse, Stop, SubagentStop, SessionStart, SessionEnd, UserPromptSubmit, PreCompact, Notification). Provides comprehensive guidance for creating and implementing Claude Code plugin hooks with focus on advanced prompt-based hooks API.