This skill should be used for fast AI consultation via cursor-agent. Triggers include context synthesis, progress tracking, pre-flight checks, or when the loop needs quick reasoning before escalating to consult-deep.
/plugin marketplace add lnittman/skills/plugin install lnittman-lnittman-skills@lnittman/skillsThis skill inherits all available tools. When active, it can use any tool Claude has access to.
references/model-selection.mdreferences/packet-building.mdreferences/prompt-templates.mdfast consultation tier using cursor-agent. context synthesis, progress tracking, pre-flight checks. escalates to consult-deep when confidence < 7.
"cheap, fast, frequent - the first line of autonomous reasoning"
| principle | application |
|---|---|
| token efficiency | structured packets, not raw history |
| confidence scoring | 0-10 scale, threshold-based escalation |
| single model | gemini-3-pro for everything (fast, cheap) |
| fail fast | confidence < 7 → escalate to consult-deep |
| stdin for long prompts | pipe via heredoc, not inline args |
| use | skip |
|---|---|
| context synthesis | simple file reads |
| progress tracking | one-off commands |
| pre-flight validation | human-in-the-loop moments |
| quick sanity checks | architectural decisions (→ consult-deep) |
| hook-level reasoning | final review (→ consult-deep) |
gemini-3-pro via cursor-agent. fast, cheap, good reasoning.
# short prompts: inline
cursor-agent -p --model gemini-3-pro "prompt here"
# long prompts: stdin (required for multi-line)
cat <<'EOF' | cursor-agent -p --model gemini-3-pro
long prompt
with multiple lines
and structured content
EOF
{
"session": {
"id": "uuid",
"started": "ISO timestamp",
"issue": "ARB-123"
},
"progress": {
"phase": "execute",
"step": 3,
"total": 7
},
"recent_actions": [
"wrote tests for auth module",
"ran verify --format=summary",
"2 test failures in login.test.ts"
],
"current_state": "fixing test failures",
"question": "should I refactor the auth helper or patch inline?"
}
{
"action": "patch inline - minimal change for this fix",
"confidence": 8,
"reason": "isolated bug, refactor would expand scope",
"escalate": false
}
cat <<'EOF' | cursor-agent -p --model gemini-3-pro
Given this session state:
{packet}
Summarize progress and recommend next action.
Output JSON: {action, confidence, reason, escalate}
EOF
cat <<'EOF' | cursor-agent -p --model gemini-3-pro
Session: {packet}
Assess: what % complete? any blockers?
Output JSON: {percent_complete, blockers[], next_step, confidence}
EOF
cat <<'EOF' | cursor-agent -p --model gemini-3-pro
About to: {proposed_action}
Context: {packet}
Validate: safe to proceed? preconditions met?
Output JSON: {proceed: bool, issues[], confidence}
EOF
cat <<'EOF' | cursor-agent -p --model gemini-3-pro
Domain skill depth review.
Task: {task_description}
Sources consulted: {sources_list}
Artifacts created: {artifact_list}
Content includes:
{content_summary}
Validate:
1. Primary sources used? (not just summaries)
2. Decision trees present? (not just philosophy)
3. Concrete values? (numbers, timings)
4. Integration with user's tools?
Output JSON: {depth_score: 1-10, pass: bool, issues: [], confidence: 1-10}
EOF
cat <<'EOF' | cursor-agent -p --model gemini-3-pro
Code work review.
Task: {task_description}
Files changed: {file_list}
Tests: {test_summary}
Validate:
1. Tests cover new behavior?
2. Follows codebase patterns?
3. Edge cases handled?
Output JSON: {pass: bool, issues: [], confidence: 1-10}
EOF
when confidence < 7 or explicit escalate flag:
# escalate to consult-deep (Codex)
codex exec --model gpt-5.2-max --approval-mode xhigh \
"Review needed: {context}
consult-light confidence: {score}
Reason for escalation: {reason}
Provide thorough analysis."
# check status
cursor-agent status
# short prompt (inline)
cursor-agent -p --model gemini-3-pro "quick question"
# long prompt (stdin) - REQUIRED for multi-line
cat <<'EOF' | cursor-agent -p --model gemini-3-pro
multi-line prompt
with context
EOF
# with workspace context
cat prompt.txt | cursor-agent -p --model gemini-3-pro --workspace /path/to/project
# JSON output format
cursor-agent -p --model gemini-3-pro --output-format json "prompt"
# list available models (error will show them)
cursor-agent -p --model help "" 2>&1 | grep "Available models"
Creating algorithmic art using p5.js with seeded randomness and interactive parameter exploration. Use this when users request creating art using code, generative art, algorithmic art, flow fields, or particle systems. Create original algorithmic art rather than copying existing artists' work to avoid copyright violations.
Applies Anthropic's official brand colors and typography to any sort of artifact that may benefit from having Anthropic's look-and-feel. Use it when brand colors or style guidelines, visual formatting, or company design standards apply.
Create beautiful visual art in .png and .pdf documents using design philosophy. You should use this skill when the user asks to create a poster, piece of art, design, or other static piece. Create original visual designs, never copying existing artists' work to avoid copyright violations.