Integrate LLM providers (Claude, GPT, etc.) with emotive-mascot for sentiment-driven emotional responses. Use when connecting to AI services, implementing chat interfaces, or creating emotion-aware conversational experiences.
Integrate LLM APIs with emotive-mascot for sentiment-driven emotional responses. Use when building chat interfaces that require AI-powered conversations with dynamic emotional reactions.
/plugin marketplace add joshtol/emotive-engine/plugin install joshtol-emotive-mascot-skills@joshtol/emotive-engineThis skill inherits all available tools. When active, it can use any tool Claude has access to.
You are an expert in integrating Large Language Models with the emotive-mascot engine for emotionally responsive conversational experiences.
// site/src/app/api/chat/route.ts
import Anthropic from '@anthropic-ai/sdk';
import { NextRequest, NextResponse } from 'next/server';
const anthropic = new Anthropic({
apiKey: process.env.ANTHROPIC_API_KEY,
});
export async function POST(req: NextRequest) {
const { message, context } = await req.json();
try {
const response = await anthropic.messages.create({
model: 'claude-haiku-4.5-20250929', // Fast and efficient
max_tokens: 1024,
messages: [
{
role: 'user',
content: message,
},
],
system: getSystemPrompt(context),
});
const aiMessage = response.content[0].text;
const sentiment = detectSentiment(aiMessage);
const emotion = mapSentimentToEmotion(sentiment);
return NextResponse.json({
message: aiMessage,
sentiment,
emotion,
usage: response.usage,
});
} catch (error) {
console.error('Claude API error:', error);
return NextResponse.json(
{ error: 'Failed to get response' },
{ status: 500 }
);
}
}
function getSystemPrompt(context: string) {
const prompts = {
retail: 'You are a helpful checkout assistant. Be concise, friendly, and solution-oriented.',
healthcare:
'You are a compassionate patient intake assistant. Be empathetic and professional.',
smarthome: 'You are a smart home assistant. Be efficient and clear.',
education:
'You are an encouraging learning tutor. Be supportive and educational.',
};
return prompts[context] || prompts.retail;
}
// site/src/components/PremiumAIAssistant.tsx
const sendMessage = async (userMessage: string) => {
setIsLoading(true);
try {
const response = await fetch('/api/chat', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
message: userMessage,
context: props.context || 'retail',
}),
});
const data = await response.json();
// Update mascot emotion based on sentiment
if (onLLMResponse) {
onLLMResponse(data.emotion, data.message);
}
setMessages(prev => [
...prev,
{
role: 'assistant',
content: data.message,
emotion: data.emotion,
},
]);
} catch (error) {
console.error('Chat error:', error);
// Show error emotion
if (onLLMResponse) {
onLLMResponse('concern', 'Sorry, I encountered an error.');
}
} finally {
setIsLoading(false);
}
};
function detectSentiment(text: string): string {
const lowercaseText = text.toLowerCase();
// Positive indicators
const positiveKeywords = [
'great',
'excellent',
'wonderful',
'perfect',
'awesome',
'love',
'thank',
'appreciate',
'helpful',
'amazing',
'success',
'correct',
'right',
'yes',
'absolutely',
];
// Negative indicators
const negativeKeywords = [
'error',
'problem',
'issue',
'wrong',
'incorrect',
'failed',
'sorry',
'unfortunately',
'cannot',
'unable',
'confused',
'confusing',
'unclear',
'difficult',
];
// Empathetic indicators
const empatheticKeywords = [
'understand',
'help',
'concern',
'worry',
'care',
'support',
'assist',
'together',
];
// Question indicators
const questionIndicators = ['?', 'how', 'what', 'why', 'when', 'where'];
const positiveCount = positiveKeywords.filter(kw =>
lowercaseText.includes(kw)
).length;
const negativeCount = negativeKeywords.filter(kw =>
lowercaseText.includes(kw)
).length;
const empatheticCount = empatheticKeywords.filter(kw =>
lowercaseText.includes(kw)
).length;
const isQuestion = questionIndicators.some(ind =>
lowercaseText.includes(ind)
);
if (isQuestion) return 'curious';
if (empatheticCount > 1) return 'empathetic';
if (positiveCount > negativeCount && positiveCount > 0) return 'positive';
if (negativeCount > positiveCount && negativeCount > 0) return 'negative';
return 'neutral';
}
async function detectSentimentWithClaude(text: string): Promise<string> {
const response = await anthropic.messages.create({
model: 'claude-haiku-4.5-20250929',
max_tokens: 50,
messages: [
{
role: 'user',
content: `Analyze the sentiment of this message and respond with ONLY one word from this list: positive, negative, neutral, empathetic, curious, excited, concerned.
Message: "${text}"`,
},
],
});
return response.content[0].text.trim().toLowerCase();
}
function mapSentimentToEmotion(sentiment: string): string {
const emotionMap: Record<string, string> = {
// Positive sentiments
positive: 'joy',
excited: 'excitement',
happy: 'joy',
grateful: 'gratitude',
proud: 'pride',
// Negative sentiments
negative: 'concern',
sad: 'empathy',
worried: 'concern',
confused: 'confusion',
frustrated: 'concern',
// Neutral sentiments
neutral: 'calm',
calm: 'calm',
focused: 'focus',
thinking: 'contemplation',
// Interactive sentiments
curious: 'curiosity',
questioning: 'curiosity',
empathetic: 'empathy',
supportive: 'encouragement',
};
return emotionMap[sentiment] || 'calm';
}
function mapSentimentToEmotion(
sentiment: string,
context: string,
messageType: 'greeting' | 'question' | 'response' | 'error'
): string {
// Retail context
if (context === 'retail') {
if (messageType === 'greeting') return 'joy';
if (messageType === 'error') return 'concern';
if (sentiment === 'positive') return 'gratitude';
}
// Healthcare context
if (context === 'healthcare') {
if (messageType === 'greeting') return 'calm';
if (sentiment === 'worried') return 'empathy';
if (sentiment === 'positive') return 'reassurance';
}
// Education context
if (context === 'education') {
if (sentiment === 'positive') return 'pride';
if (sentiment === 'confused') return 'encouragement';
if (messageType === 'question') return 'contemplation';
}
// Default mapping
return mapSentimentToEmotion(sentiment);
}
// System prompt for retail
const RETAIL_SYSTEM_PROMPT = `You are a helpful retail checkout assistant. Your role is to:
- Help customers with scanning items
- Assist with payment issues
- Answer questions about coupons and discounts
- Troubleshoot scanner problems
Be concise (2-3 sentences max), friendly, and solution-oriented.
Always offer to escalate to a human if the issue is complex.`;
// Emotion mapping for retail
function getRetailEmotion(sentiment: string, message: string): string {
if (message.includes('success') || message.includes('complete')) {
return 'joy';
}
if (message.includes('scan') || message.includes('payment')) {
return 'anticipation';
}
if (message.includes('help') || message.includes('issue')) {
return 'concern';
}
if (message.includes('thank')) {
return 'gratitude';
}
return mapSentimentToEmotion(sentiment);
}
// System prompt for healthcare
const HEALTHCARE_SYSTEM_PROMPT = `You are a compassionate patient intake assistant. Your role is to:
- Guide patients through intake forms
- Answer questions about the process
- Provide reassurance about privacy and security
- Be empathetic to patient concerns
Be professional, warm, and respectful. Use simple language.
Never provide medical advice - only help with the intake process.`;
// Emotion mapping for healthcare
function getHealthcareEmotion(sentiment: string, message: string): string {
// Always start with calm reassurance
if (message.includes('welcome') || message.includes('help you')) {
return 'calm';
}
// Empathy for concerns
if (sentiment === 'worried' || sentiment === 'concerned') {
return 'empathy';
}
// Reassurance when explaining
if (message.includes('secure') || message.includes('private')) {
return 'reassurance';
}
// Gratitude when completed
if (message.includes('complete') || message.includes('submitted')) {
return 'gratitude';
}
return 'calm';
}
// System prompt for education
const EDUCATION_SYSTEM_PROMPT = `You are an encouraging AI tutor. Your role is to:
- Help students understand concepts
- Provide hints without giving away answers
- Celebrate correct answers
- Encourage after incorrect answers
Be supportive, patient, and educational. Use the Socratic method.
Never just give the answer - guide students to discover it themselves.`;
// Emotion mapping for education
function getEducationEmotion(
sentiment: string,
message: string,
isCorrect?: boolean
): string {
// Celebration for correct answers
if (
isCorrect === true ||
message.includes('correct') ||
message.includes('great job')
) {
return 'pride';
}
// Encouragement for incorrect answers
if (
isCorrect === false ||
message.includes("let's try") ||
message.includes('not quite')
) {
return 'encouragement';
}
// Thinking when asking questions
if (message.includes('?') || message.includes('think about')) {
return 'contemplation';
}
return mapSentimentToEmotion(sentiment);
}
For real-time emotional responses during streaming:
async function streamChatResponse(
message: string,
onChunk: (chunk: string) => void
) {
const stream = await anthropic.messages.stream({
model: 'claude-haiku-4.5-20250929',
max_tokens: 1024,
messages: [{ role: 'user', content: message }],
});
let fullResponse = '';
let lastSentiment = 'neutral';
for await (const chunk of stream) {
if (
chunk.type === 'content_block_delta' &&
chunk.delta.type === 'text_delta'
) {
const text = chunk.delta.text;
fullResponse += text;
onChunk(text);
// Analyze sentiment every 50 characters
if (fullResponse.length % 50 === 0) {
const currentSentiment = detectSentiment(fullResponse);
if (currentSentiment !== lastSentiment) {
const emotion = mapSentimentToEmotion(currentSentiment);
// Transition mascot emotion
mascot?.transitionTo(emotion, { duration: 800 });
lastSentiment = currentSentiment;
}
}
}
}
return fullResponse;
}
async function handleChatError(error: any, mascot: any) {
console.error('Chat error:', error);
// Transition to concern emotion
await mascot?.transitionTo('concern', { duration: 800 });
// Provide user-friendly error message
let errorMessage = 'I encountered an error. Please try again.';
if (error.status === 429) {
errorMessage =
"I'm receiving too many requests. Please wait a moment and try again.";
} else if (error.status === 401) {
errorMessage =
'There was an authentication error. Please contact support.';
} else if (error.status === 500) {
errorMessage =
'The AI service is temporarily unavailable. Please try again later.';
}
return errorMessage;
}
// site/src/app/api/chat/rate-limit.ts
import { NextRequest } from 'next/server';
const rateLimit = new Map<string, { count: number; resetAt: number }>();
export function checkRateLimit(
req: NextRequest,
maxRequests = 10,
windowMs = 60000
): boolean {
const ip = req.ip || req.headers.get('x-forwarded-for') || 'unknown';
const now = Date.now();
const userLimit = rateLimit.get(ip);
if (!userLimit || now > userLimit.resetAt) {
rateLimit.set(ip, { count: 1, resetAt: now + windowMs });
return true;
}
if (userLimit.count >= maxRequests) {
return false;
}
userLimit.count++;
return true;
}
// Usage in route
export async function POST(req: NextRequest) {
if (!checkRateLimit(req)) {
return NextResponse.json(
{ error: 'Rate limit exceeded. Please try again later.' },
{ status: 429 }
);
}
// ... rest of handler
}
// Cache common queries
const responseCache = new Map<
string,
{ response: string; timestamp: number }
>();
const CACHE_TTL = 5 * 60 * 1000; // 5 minutes
function getCachedResponse(message: string): string | null {
const cached = responseCache.get(message.toLowerCase());
if (cached && Date.now() - cached.timestamp < CACHE_TTL) {
return cached.response;
}
return null;
}
function setCachedResponse(message: string, response: string) {
responseCache.set(message.toLowerCase(), {
response,
timestamp: Date.now(),
});
}
# .env.local
ANTHROPIC_API_KEY=your_anthropic_api_key_here
# Or for OpenAI
OPENAI_API_KEY=your_openai_api_key_here
// Verify API key is set
if (!process.env.ANTHROPIC_API_KEY) {
throw new Error('ANTHROPIC_API_KEY environment variable is required');
}
// Test suite for LLM integration
describe('LLM Integration', () => {
it('should detect positive sentiment', () => {
const text = 'This is great! Thank you so much!';
const sentiment = detectSentiment(text);
expect(sentiment).toBe('positive');
});
it('should map sentiment to correct emotion', () => {
const emotion = mapSentimentToEmotion('positive');
expect(emotion).toBe('joy');
});
it('should handle API errors gracefully', async () => {
// Mock API error
const error = { status: 429 };
const message = await handleChatError(error, mockMascot);
expect(message).toContain('too many requests');
});
it('should apply context-aware emotion mapping', () => {
const emotion = mapSentimentToEmotion(
'worried',
'healthcare',
'response'
);
expect(emotion).toBe('empathy');
});
});
// Debounce chat requests
import { debounce } from 'lodash';
const debouncedSendMessage = debounce(async (message: string) => {
await sendMessage(message);
}, 500);
// Optimize for mobile
const isMobile = /Android|iPhone|iPad/i.test(navigator.userAgent);
const chatConfig = {
maxTokens: isMobile ? 512 : 1024, // Shorter responses on mobile
enableStreaming: !isMobile, // Disable streaming on mobile for reliability
cacheResponses: true,
};
site/src/app/api/chat/route.tssite/src/components/PremiumAIAssistant.tsxsite/src/utils/sentiment.tssite/src/utils/emotion-mapper.tssite/src/app/use-cases/*/page.tsxThis skill should be used when the user asks to "create a slash command", "add a command", "write a custom command", "define command arguments", "use command frontmatter", "organize commands", "create command with file references", "interactive command", "use AskUserQuestion in command", or needs guidance on slash command structure, YAML frontmatter fields, dynamic arguments, bash execution in commands, user interaction patterns, or command development best practices for Claude Code.
This skill should be used when the user asks to "create an agent", "add an agent", "write a subagent", "agent frontmatter", "when to use description", "agent examples", "agent tools", "agent colors", "autonomous agent", or needs guidance on agent structure, system prompts, triggering conditions, or agent development best practices for Claude Code plugins.
This skill should be used when the user asks to "create a hook", "add a PreToolUse/PostToolUse/Stop hook", "validate tool use", "implement prompt-based hooks", "use ${CLAUDE_PLUGIN_ROOT}", "set up event-driven automation", "block dangerous commands", or mentions hook events (PreToolUse, PostToolUse, Stop, SubagentStop, SessionStart, SessionEnd, UserPromptSubmit, PreCompact, Notification). Provides comprehensive guidance for creating and implementing Claude Code plugin hooks with focus on advanced prompt-based hooks API.