Build AI applications with OpenAI Agents SDK - text agents, voice agents, multi-agent handoffs, tools with Zod schemas, guardrails, and streaming. Use when: building agents with tools, voice agents with WebRTC, multi-agent workflows, or troubleshooting MaxTurnsExceededError, tool call failures.
/plugin marketplace add jezweb/claude-skills/plugin install jezweb-tooling-skills@jezweb/claude-skillsThis skill inherits all available tools. When active, it can use any tool Claude has access to.
LICENSEREADME.mdreferences/agent-patterns.mdreferences/cloudflare-integration.mdreferences/common-errors.mdreferences/official-links.mdreferences/realtime-transports.mdrules/openai-agents.mdscripts/check-versions.shtemplates/cloudflare-workers/worker-agent-hono.tstemplates/cloudflare-workers/worker-text-agent.tstemplates/nextjs/api-agent-route.tstemplates/nextjs/api-realtime-route.tstemplates/realtime-agents/realtime-agent-basic.tstemplates/realtime-agents/realtime-handoffs.tstemplates/realtime-agents/realtime-session-browser.tsxtemplates/shared/error-handling.tstemplates/shared/package.jsontemplates/shared/tracing-setup.tstemplates/text-agents/agent-basic.tsBuild AI applications with text agents, voice agents (realtime), multi-agent workflows, tools, guardrails, and human-in-the-loop patterns.
npm install @openai/agents zod@4
npm install @openai/agents-realtime # Voice agents
export OPENAI_API_KEY="your-key"
Runtimes: Node.js 22+, Deno, Bun, Cloudflare Workers (experimental)
Agents: LLMs with instructions + tools
import { Agent } from '@openai/agents';
const agent = new Agent({ name: 'Assistant', tools: [myTool], model: 'gpt-4o-mini' });
Tools: Functions with Zod schemas
import { tool } from '@openai/agents';
import { z } from 'zod';
const weatherTool = tool({
name: 'get_weather',
parameters: z.object({ city: z.string() }),
execute: async ({ city }) => `Weather in ${city}: sunny`,
});
Handoffs: Multi-agent delegation
const triageAgent = Agent.create({ handoffs: [specialist1, specialist2] });
Guardrails: Input/output validation
const agent = new Agent({ inputGuardrails: [detector], outputGuardrails: [filter] });
Structured Outputs: Type-safe responses
const agent = new Agent({ outputType: z.object({ sentiment: z.enum(['positive', 'negative']) }) });
Basic: const result = await run(agent, 'What is 2+2?')
Streaming:
const stream = await run(agent, 'Tell me a story', { stream: true });
for await (const event of stream) {
if (event.type === 'raw_model_stream_event') process.stdout.write(event.data?.choices?.[0]?.delta?.content || '');
}
const billingAgent = new Agent({ name: 'Billing', handoffDescription: 'For billing questions', tools: [refundTool] });
const techAgent = new Agent({ name: 'Technical', handoffDescription: 'For tech issues', tools: [ticketTool] });
const triageAgent = Agent.create({ name: 'Triage', handoffs: [billingAgent, techAgent] });
Input: Validate before processing
const guardrail: InputGuardrail = {
execute: async ({ input }) => ({ tripwireTriggered: detectHomework(input) })
};
const agent = new Agent({ inputGuardrails: [guardrail] });
Output: Filter responses (PII detection, content safety)
const refundTool = tool({ name: 'process_refund', requiresApproval: true, execute: async ({ amount }) => `Refunded $${amount}` });
let result = await runner.run(input);
while (result.interruption?.type === 'tool_approval') {
result = await promptUser(result.interruption) ? result.state.approve(result.interruption) : result.state.reject(result.interruption);
}
Create:
import { RealtimeAgent } from '@openai/agents-realtime';
const voiceAgent = new RealtimeAgent({
voice: 'alloy', // alloy, echo, fable, onyx, nova, shimmer
model: 'gpt-4o-realtime-preview',
tools: [weatherTool],
});
Browser Session:
import { RealtimeSession } from '@openai/agents-realtime';
const session = new RealtimeSession(voiceAgent, { apiKey: sessionApiKey, transport: 'webrtc' });
await session.connect();
CRITICAL: Never send OPENAI_API_KEY to browser! Generate ephemeral session tokens server-side.
Voice Handoffs: Voice/model must match across agents (cannot change during handoff)
Templates:
templates/realtime-agents/realtime-agent-basic.tstemplates/realtime-agents/realtime-session-browser.tsxtemplates/realtime-agents/realtime-handoffs.tsReferences:
references/realtime-transports.md - WebRTC vs WebSocketCloudflare Workers (experimental):
export default {
async fetch(request: Request, env: Env) {
process.env.OPENAI_API_KEY = env.OPENAI_API_KEY;
const agent = new Agent({ name: 'Assistant', model: 'gpt-4o-mini' });
const result = await run(agent, (await request.json()).message);
return Response.json({ response: result.finalOutput, tokens: result.usage.totalTokens });
}
};
Limitations: No voice agents, 30s CPU limit, 128MB memory
Next.js: app/api/agent/route.ts → POST handler with run(agent, message)
Templates: cloudflare-workers/, nextjs/
Error: Type errors with tool parameters.
Workaround: Define schemas inline.
// ❌ Can cause type errors
parameters: mySchema
// ✅ Works reliably
parameters: z.object({ field: z.string() })
Source: GitHub #188
Error: "No existing trace found" with MCP servers.
Workaround:
import { initializeTracing } from '@openai/agents/tracing';
await initializeTracing();
Source: GitHub #580
Error: Agent loops infinitely.
Solution: Increase maxTurns or improve instructions:
const result = await run(agent, input, {
maxTurns: 20, // Increase limit
});
// Or improve instructions
instructions: `After using tools, provide a final answer.
Do not loop endlessly.`
Error: Tool execution fails.
Solution: Retry with exponential backoff:
for (let attempt = 1; attempt <= 3; attempt++) {
try {
return await run(agent, input);
} catch (error) {
if (error instanceof ToolCallError && attempt < 3) {
await sleep(1000 * Math.pow(2, attempt - 1));
continue;
}
throw error;
}
}
Error: Output doesn't match outputType.
Solution: Use stronger model or add validation instructions:
const agent = new Agent({
model: 'gpt-4o', // More reliable than gpt-4o-mini
instructions: 'CRITICAL: Return JSON matching schema exactly',
outputType: mySchema,
});
All Errors: See references/common-errors.md
Template: templates/shared/error-handling.ts
LLM-Based: Agent decides routing autonomously (adaptive, higher tokens)
Code-Based: Explicit control flow with conditionals (predictable, lower cost)
Parallel: Promise.all([run(agent1, text), run(agent2, text)]) (concurrent execution)
process.env.DEBUG = '@openai/agents:*'; // Verbose logging
const result = await run(agent, input);
console.log(result.usage.totalTokens, result.history.length, result.currentAgent?.name);
❌ Don't use when:
openai-api skill instead)OPENAI_API_KEY as environment secretmaxTurns to prevent runaway costsgpt-4o-mini where possible for cost efficiencyEstimated Savings: ~60%
| Task | Without Skill | With Skill | Savings |
|---|---|---|---|
| Multi-agent setup | ~12k tokens | ~5k tokens | 58% |
| Voice agent | ~10k tokens | ~4k tokens | 60% |
| Error debugging | ~8k tokens | ~3k tokens | 63% |
| Average | ~10k | ~4k | ~60% |
Errors Prevented: 9 documented issues = 100% error prevention
Text Agents (8):
agent-basic.ts - Simple agent with toolsagent-handoffs.ts - Multi-agent triageagent-structured-output.ts - Zod schemasagent-streaming.ts - Real-time eventsagent-guardrails-input.ts - Input validationagent-guardrails-output.ts - Output filteringagent-human-approval.ts - HITL patternagent-parallel.ts - Concurrent executionRealtime Agents (3):
9. realtime-agent-basic.ts - Voice setup
10. realtime-session-browser.tsx - React client
11. realtime-handoffs.ts - Voice delegation
Framework Integration (4):
12. worker-text-agent.ts - Cloudflare Workers
13. worker-agent-hono.ts - Hono framework
14. api-agent-route.ts - Next.js API
15. api-realtime-route.ts - Next.js voice
Utilities (2):
16. error-handling.ts - Comprehensive errors
17. tracing-setup.ts - Debugging
agent-patterns.md - Orchestration strategiescommon-errors.md - 9 errors with workaroundsrealtime-transports.md - WebRTC vs WebSocketcloudflare-integration.md - Workers limitationsofficial-links.md - Documentation linksVersion: SDK v0.3.7 Last Verified: 2026-01-09 Skill Author: Jeremy Dawes (Jezweb) Production Tested: Yes
This skill should be used when the user asks to "create a slash command", "add a command", "write a custom command", "define command arguments", "use command frontmatter", "organize commands", "create command with file references", "interactive command", "use AskUserQuestion in command", or needs guidance on slash command structure, YAML frontmatter fields, dynamic arguments, bash execution in commands, user interaction patterns, or command development best practices for Claude Code.
This skill should be used when the user asks to "create an agent", "add an agent", "write a subagent", "agent frontmatter", "when to use description", "agent examples", "agent tools", "agent colors", "autonomous agent", or needs guidance on agent structure, system prompts, triggering conditions, or agent development best practices for Claude Code plugins.
This skill should be used when the user asks to "create a hook", "add a PreToolUse/PostToolUse/Stop hook", "validate tool use", "implement prompt-based hooks", "use ${CLAUDE_PLUGIN_ROOT}", "set up event-driven automation", "block dangerous commands", or mentions hook events (PreToolUse, PostToolUse, Stop, SubagentStop, SessionStart, SessionEnd, UserPromptSubmit, PreCompact, Notification). Provides comprehensive guidance for creating and implementing Claude Code plugin hooks with focus on advanced prompt-based hooks API.