Implement Vercel load testing, auto-scaling, and capacity planning strategies. Use when running performance tests, configuring horizontal scaling, or planning capacity for Vercel integrations. Trigger with phrases like "vercel load test", "vercel scale", "vercel performance test", "vercel capacity", "vercel k6", "vercel benchmark".
/plugin marketplace add jeremylongshore/claude-code-plugins-plus-skills/plugin install vercel-pack@claude-code-plugins-plusThis skill is limited to using the following tools:
Load testing, scaling strategies, and capacity planning for Vercel integrations.
// vercel-load-test.js
import http from 'k6/http';
import { check, sleep } from 'k6';
export const options = {
stages: [
{ duration: '2m', target: 10 }, // Ramp up
{ duration: '5m', target: 10 }, // Steady state
{ duration: '2m', target: 50 }, // Ramp to peak
{ duration: '5m', target: 50 }, // Stress test
{ duration: '2m', target: 0 }, // Ramp down
],
thresholds: {
http_req_duration: ['p(95)<100'],
http_req_failed: ['rate<0.01'],
},
};
export default function () {
const response = http.post(
'https://api.vercel.com/v1/resource',
JSON.stringify({ test: true }),
{
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer ${__ENV.VERCEL_API_KEY}`,
},
}
);
check(response, {
'status is 200': (r) => r.status === 200,
'latency < 100ms': (r) => r.timings.duration < 100,
});
sleep(1);
}
# Install k6
brew install k6 # macOS
# or: sudo apt install k6 # Linux
# Run test
k6 run --env VERCEL_API_KEY=${VERCEL_API_KEY} vercel-load-test.js
# Run with output to InfluxDB
k6 run --out influxdb=http://localhost:8086/k6 vercel-load-test.js
# kubernetes HPA
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: vercel-integration-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: vercel-integration
minReplicas: 2
maxReplicas: 20
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Pods
pods:
metric:
name: vercel_queue_depth
target:
type: AverageValue
averageValue: 100
import { Pool } from 'generic-pool';
const vercelPool = Pool.create({
create: async () => {
return new VercelClient({
apiKey: process.env.VERCEL_API_KEY!,
});
},
destroy: async (client) => {
await client.close();
},
max: None,
min: None,
idleTimeoutMillis: 30000,
});
async function withVercelClient<T>(
fn: (client: VercelClient) => Promise<T>
): Promise<T> {
const client = await vercelPool.acquire();
try {
return await fn(client);
} finally {
vercelPool.release(client);
}
}
| Metric | Warning | Critical |
|---|---|---|
| CPU Utilization | > 70% | > 85% |
| Memory Usage | > 75% | > 90% |
| Request Queue Depth | > 100 | > 500 |
| Error Rate | > 1% | > 5% |
| P95 Latency | > 500ms | > 2000ms |
interface CapacityEstimate {
currentRPS: number;
maxRPS: number;
headroom: number;
scaleRecommendation: string;
}
function estimateVercelCapacity(
metrics: SystemMetrics
): CapacityEstimate {
const currentRPS = metrics.requestsPerSecond;
const avgLatency = metrics.p50Latency;
const cpuUtilization = metrics.cpuPercent;
// Estimate max RPS based on current performance
const maxRPS = currentRPS / (cpuUtilization / 100) * 0.7; // 70% target
const headroom = ((maxRPS - currentRPS) / currentRPS) * 100;
return {
currentRPS,
maxRPS: Math.floor(maxRPS),
headroom: Math.round(headroom),
scaleRecommendation: headroom < 30
? 'Scale up soon'
: headroom < 50
? 'Monitor closely'
: 'Adequate capacity',
};
}
## Vercel Performance Benchmark
**Date:** YYYY-MM-DD
**Environment:** [staging/production]
**SDK Version:** X.Y.Z
### Test Configuration
- Duration: 10 minutes
- Ramp: 10 → 100 → 10 VUs
- Target endpoint: /v1/resource
### Results
| Metric | Value |
|--------|-------|
| Total Requests | 50,000 |
| Success Rate | 99.9% |
| P50 Latency | 120ms |
| P95 Latency | 350ms |
| P99 Latency | 800ms |
| Max RPS Achieved | 150 |
### Observations
- [Key finding 1]
- [Key finding 2]
### Recommendations
- [Scaling recommendation]
Write k6 test script with appropriate thresholds.
Set up HPA with CPU and custom metrics.
Execute test and collect metrics.
Record results in benchmark template.
| Issue | Cause | Solution |
|---|---|---|
| k6 timeout | Rate limited | Reduce RPS |
| HPA not scaling | Wrong metrics | Verify metric name |
| Connection refused | Pool exhausted | Increase pool size |
| Inconsistent results | Warm-up needed | Add ramp-up phase |
k6 run --vus 10 --duration 30s vercel-load-test.js
const metrics = await getSystemMetrics();
const capacity = estimateVercelCapacity(metrics);
console.log('Headroom:', capacity.headroom + '%');
console.log('Recommendation:', capacity.scaleRecommendation);
kubectl scale deployment vercel-integration --replicas=5
kubectl get hpa vercel-integration-hpa
For reliability patterns, see vercel-reliability-patterns.