Implement Customer.io load testing and scaling. Use when preparing for high traffic, load testing, or scaling integrations for enterprise workloads. Trigger with phrases like "customer.io load test", "customer.io scale", "customer.io high volume", "customer.io performance test".
/plugin marketplace add jeremylongshore/claude-code-plugins-plus-skills/plugin install customerio-pack@claude-code-plugins-plusThis skill is limited to using the following tools:
Load testing and scaling strategies for high-volume Customer.io integrations.
| Endpoint | Limit | Notes |
|---|---|---|
| Track API (identify/track) | 100 req/sec | Per workspace |
| App API (transactional) | 100 req/sec | Per workspace |
| Webhooks (outbound) | Varies | Based on plan |
| Volume | Architecture | Notes |
|---|---|---|
| < 1M events/day | Single service | Direct API calls |
| 1-10M events/day | Queue-based | Message queue buffer |
| > 10M events/day | Distributed | Multiple workers |
// load-tests/customerio.js
import http from 'k6/http';
import { check, sleep } from 'k6';
import { Rate, Trend } from 'k6/metrics';
const errorRate = new Rate('errors');
const identifyDuration = new Trend('identify_duration');
const trackDuration = new Trend('track_duration');
const BASE_URL = 'https://track.customer.io/api/v1';
const AUTH = __ENV.CUSTOMERIO_AUTH; // base64(site_id:api_key)
export const options = {
scenarios: {
identify_load: {
executor: 'ramping-rate',
startRate: 10,
timeUnit: '1s',
preAllocatedVUs: 50,
stages: [
{ target: 50, duration: '1m' },
{ target: 100, duration: '2m' },
{ target: 100, duration: '5m' },
{ target: 0, duration: '1m' },
],
exec: 'identifyScenario',
},
track_load: {
executor: 'ramping-rate',
startRate: 10,
timeUnit: '1s',
preAllocatedVUs: 50,
stages: [
{ target: 50, duration: '1m' },
{ target: 100, duration: '2m' },
{ target: 100, duration: '5m' },
{ target: 0, duration: '1m' },
],
exec: 'trackScenario',
},
},
thresholds: {
'errors': ['rate<0.01'],
'identify_duration': ['p95<500'],
'track_duration': ['p95<500'],
},
};
export function identifyScenario() {
const userId = `load-test-${__VU}-${__ITER}`;
const payload = JSON.stringify({
email: `${userId}@loadtest.com`,
_load_test: true,
created_at: Math.floor(Date.now() / 1000),
});
const start = new Date();
const res = http.post(
`${BASE_URL}/customers/${userId}`,
payload,
{
headers: {
'Authorization': `Basic ${AUTH}`,
'Content-Type': 'application/json',
},
}
);
identifyDuration.add(new Date() - start);
const success = check(res, {
'identify status is 200': (r) => r.status === 200,
});
errorRate.add(!success);
sleep(0.1);
}
export function trackScenario() {
const userId = `load-test-${__VU}-${__ITER}`;
const payload = JSON.stringify({
name: 'load_test_event',
data: {
source: 'k6',
timestamp: new Date().toISOString(),
},
});
const start = new Date();
const res = http.post(
`${BASE_URL}/customers/${userId}/events`,
payload,
{
headers: {
'Authorization': `Basic ${AUTH}`,
'Content-Type': 'application/json',
},
}
);
trackDuration.add(new Date() - start);
const success = check(res, {
'track status is 200': (r) => r.status === 200,
});
errorRate.add(!success);
sleep(0.1);
}
# k8s/scaled-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: customerio-worker
spec:
replicas: 3
selector:
matchLabels:
app: customerio-worker
template:
metadata:
labels:
app: customerio-worker
spec:
containers:
- name: worker
image: customerio-worker:latest
resources:
requests:
cpu: "500m"
memory: "256Mi"
limits:
cpu: "1000m"
memory: "512Mi"
env:
- name: CONCURRENCY
value: "10"
---
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: customerio-worker-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: customerio-worker
minReplicas: 3
maxReplicas: 20
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: External
external:
metric:
name: pubsub.googleapis.com|subscription|num_undelivered_messages
selector:
matchLabels:
resource.labels.subscription_id: customerio-events
target:
type: AverageValue
averageValue: 1000
// lib/scaled-processor.ts
import { Kafka, Consumer, EachMessagePayload } from 'kafkajs';
import { TrackClient, RegionUS } from '@customerio/track';
const kafka = new Kafka({
clientId: 'customerio-worker',
brokers: process.env.KAFKA_BROKERS!.split(',')
});
const consumer = kafka.consumer({
groupId: 'customerio-workers',
sessionTimeout: 30000,
heartbeatInterval: 3000
});
const client = new TrackClient(
process.env.CUSTOMERIO_SITE_ID!,
process.env.CUSTOMERIO_API_KEY!,
{ region: RegionUS }
);
interface CustomerIOEvent {
type: 'identify' | 'track';
userId: string;
payload: any;
}
async function processMessage(message: EachMessagePayload): Promise<void> {
const event: CustomerIOEvent = JSON.parse(message.message.value!.toString());
if (event.type === 'identify') {
await client.identify(event.userId, event.payload);
} else if (event.type === 'track') {
await client.track(event.userId, {
name: event.payload.event,
data: event.payload.properties
});
}
}
async function start(): Promise<void> {
await consumer.connect();
await consumer.subscribe({ topic: 'customerio-events', fromBeginning: false });
await consumer.run({
partitionsConsumedConcurrently: 10,
eachMessage: async (payload) => {
try {
await processMessage(payload);
} catch (error) {
console.error('Processing error:', error);
// Dead letter or retry logic
}
}
});
}
start().catch(console.error);
// lib/rate-limiter.ts
import Bottleneck from 'bottleneck';
// Respect Customer.io's 100 req/sec limit
// Leave headroom for other services
const limiter = new Bottleneck({
reservoir: 80, // 80 tokens
reservoirRefreshAmount: 80,
reservoirRefreshInterval: 1000, // per second
maxConcurrent: 20,
minTime: 10 // Minimum 10ms between requests
});
// Track rate limit events
limiter.on('depleted', () => {
console.warn('Rate limiter depleted, requests queued');
});
limiter.on('error', (error) => {
console.error('Rate limiter error:', error);
});
export async function rateLimitedIdentify(
client: TrackClient,
userId: string,
attributes: Record<string, any>
): Promise<void> {
return limiter.schedule(() => client.identify(userId, attributes));
}
export async function rateLimitedTrack(
client: TrackClient,
userId: string,
event: string,
data?: Record<string, any>
): Promise<void> {
return limiter.schedule(() =>
client.track(userId, { name: event, data })
);
}
// Get limiter stats
export function getLimiterStats() {
return {
running: limiter.running(),
queued: limiter.queued(),
done: limiter.done(),
reservoir: limiter.reservoir
};
}
// lib/batch-sender.ts
interface BatchConfig {
maxBatchSize: number;
maxWaitMs: number;
concurrency: number;
}
class BatchSender {
private batch: Array<{ userId: string; operation: 'identify' | 'track'; data: any }> = [];
private timer: NodeJS.Timer | null = null;
private processing = false;
constructor(
private client: TrackClient,
private config: BatchConfig = { maxBatchSize: 100, maxWaitMs: 1000, concurrency: 10 }
) {}
add(userId: string, operation: 'identify' | 'track', data: any): void {
this.batch.push({ userId, operation, data });
if (this.batch.length >= this.config.maxBatchSize) {
this.flush();
} else if (!this.timer) {
this.timer = setTimeout(() => this.flush(), this.config.maxWaitMs);
}
}
async flush(): Promise<void> {
if (this.processing || this.batch.length === 0) return;
if (this.timer) {
clearTimeout(this.timer);
this.timer = null;
}
this.processing = true;
const items = this.batch.splice(0, this.config.maxBatchSize);
// Process in parallel with limited concurrency
for (let i = 0; i < items.length; i += this.config.concurrency) {
const chunk = items.slice(i, i + this.config.concurrency);
await Promise.allSettled(chunk.map(item => this.processItem(item)));
}
this.processing = false;
}
private async processItem(item: { userId: string; operation: string; data: any }): Promise<void> {
if (item.operation === 'identify') {
await this.client.identify(item.userId, item.data);
} else {
await this.client.track(item.userId, {
name: item.data.event,
data: item.data.properties
});
}
}
}
#!/bin/bash
# scripts/run-load-test.sh
# Set credentials
export CUSTOMERIO_AUTH=$(echo -n "$CIO_SITE_ID:$CIO_API_KEY" | base64)
# Run k6 load test
k6 run \
--out json=results.json \
--out influxdb=http://localhost:8086/k6 \
load-tests/customerio.js
# Generate report
k6 run --summary-export=summary.json load-tests/customerio.js
echo "Load test complete. Results in results.json"
| Issue | Solution |
|---|---|
| Rate limited (429) | Reduce concurrency |
| Timeout errors | Increase timeout |
| Queue backlog | Scale workers |
After load testing, proceed to customerio-known-pitfalls for anti-patterns.
Creating algorithmic art using p5.js with seeded randomness and interactive parameter exploration. Use this when users request creating art using code, generative art, algorithmic art, flow fields, or particle systems. Create original algorithmic art rather than copying existing artists' work to avoid copyright violations.
Applies Anthropic's official brand colors and typography to any sort of artifact that may benefit from having Anthropic's look-and-feel. Use it when brand colors or style guidelines, visual formatting, or company design standards apply.
Create beautiful visual art in .png and .pdf documents using design philosophy. You should use this skill when the user asks to create a poster, piece of art, design, or other static piece. Create original visual designs, never copying existing artists' work to avoid copyright violations.