Interactive LeetCode-style teacher for technical interview preparation. Generates coding playgrounds with real product challenges, teaches patterns and techniques, supports Python/TypeScript/Kotlin/Swift, and provides progressive difficulty training for data structures and algorithms.
Interactive LeetCode teacher with browser-based coding playgrounds. Generates real product challenges (Instagram, Uber, Netflix) with instant feedback, multi-language support (Python/TypeScript/Kotlin/Swift), and progressive difficulty training for 20 essential patterns.
/plugin marketplace add jamesrochabrun/skills/plugin install all-skills@skills-marketplaceThis skill inherits all available tools. When active, it can use any tool Claude has access to.
references/data_structures.mdreferences/patterns.mdscripts/generate_playground.shscripts/generate_problem.shAn interactive technical interview preparation teacher that generates engaging coding playgrounds with real-world product challenges, pattern recognition training, and multi-language support.
Transforms technical interview prep into interactive, practical experiences:
Traditional LeetCode practice:
With this skill:
1. Two Pointers
Pattern: Use two pointers to scan array
Use when: Need to find pairs, triplets, or subarrays
Example: "Find Instagram users who like each other"
Complexity: O(n) time, O(1) space
2. Sliding Window
Pattern: Maintain a window that slides through array
Use when: Need to find subarray with certain property
Example: "Find trending topics in last N tweets"
Complexity: O(n) time, O(k) space
3. Fast & Slow Pointers
Pattern: Two pointers moving at different speeds
Use when: Detect cycles, find middle element
Example: "Detect circular dependency in package manager"
Complexity: O(n) time, O(1) space
4. Tree BFS
Pattern: Level-order traversal using queue
Use when: Need level-by-level processing
Example: "Show friends by degree of connection"
Complexity: O(n) time, O(w) space (w = max width)
5. Tree DFS
Pattern: Preorder, inorder, or postorder traversal
Use when: Need to explore all paths
Example: "Find all paths in file system"
Complexity: O(n) time, O(h) space (h = height)
6. Graph BFS
Pattern: Explore neighbors level by level
Use when: Shortest path, level-based exploration
Example: "Find shortest connection path on LinkedIn"
Complexity: O(V + E) time, O(V) space
7. Graph DFS
Pattern: Explore as far as possible before backtracking
Use when: Path finding, cycle detection
Example: "Detect circular references in social graph"
Complexity: O(V + E) time, O(V) space
8. Topological Sort
Pattern: Order nodes by dependencies
Use when: Task scheduling, build systems
Example: "Order courses based on prerequisites"
Complexity: O(V + E) time, O(V) space
9. 0/1 Knapsack
Pattern: Include or exclude each item
Use when: Optimization with constraints
Example: "Select best ads within budget"
Complexity: O(n * capacity) time and space
10. Unbounded Knapsack
Pattern: Can use item unlimited times
Use when: Coin change, combinations
Example: "Minimum transactions to reach balance"
Complexity: O(n * target) time and space
11. Fibonacci Numbers
Pattern: Current state depends on previous states
Use when: Climbing stairs, tiling problems
Example: "Ways to navigate through app screens"
Complexity: O(n) time, O(1) space optimized
12. Longest Common Subsequence
Pattern: Compare two sequences
Use when: Diff tools, edit distance
Example: "Find similar code snippets"
Complexity: O(m * n) time and space
13. Modified Binary Search
Pattern: Binary search on sorted or rotated array
Use when: Search in O(log n)
Example: "Find version when bug was introduced"
Complexity: O(log n) time, O(1) space
14. Top K Elements
Pattern: Use heap to track K largest/smallest
Use when: Finding top items
Example: "Get top K trending hashtags"
Complexity: O(n log k) time, O(k) space
15. K-Way Merge
Pattern: Merge K sorted arrays/lists
Use when: Combining sorted data
Example: "Merge activity feeds from K users"
Complexity: O(n log k) time, O(k) space
16. Backtracking
Pattern: Try all possibilities with pruning
Use when: Generate permutations, combinations
Example: "Generate all valid parentheses combinations"
Complexity: Varies, often exponential
17. Union Find
Pattern: Track connected components
Use when: Network connectivity, grouping
Example: "Find connected friend groups"
Complexity: O(α(n)) amortized per operation
18. Intervals
Pattern: Merge, insert, or find overlapping intervals
Use when: Calendar scheduling, time ranges
Example: "Find free meeting slots"
Complexity: O(n log n) time, O(n) space
19. Monotonic Stack
Pattern: Maintain increasing/decreasing stack
Use when: Next greater/smaller element
Example: "Stock price span calculation"
Complexity: O(n) time, O(n) space
20. Trie
Pattern: Prefix tree for string operations
Use when: Autocomplete, prefix matching
Example: "Implement search autocomplete"
Complexity: O(m) time per operation (m = word length)
Instagram: Like Counter
Real Scenario: Count how many times user's posts were liked today
Pattern: Hash Map
Data Structure: Dictionary/HashMap
Languages: Python, TypeScript, Kotlin, Swift
Slack: Unread Messages
Real Scenario: Find first unread message in channel
Pattern: Linear Search with Flag
Data Structure: Array
Teaches: Early termination
Uber: Calculate Fare
Real Scenario: Compute trip cost based on distance and time
Pattern: Simple Calculation
Data Structure: Numbers
Teaches: Math operations, rounding
Netflix: Top N Recommendations
Real Scenario: Find top N movies by rating
Pattern: Top K Elements (Heap)
Data Structure: Priority Queue
Teaches: Heap operations, partial sorting
Amazon: Inventory Management
Real Scenario: Find products running low in stock
Pattern: Filtering with Threshold
Data Structure: Array + HashMap
Teaches: Multi-criteria filtering
Twitter: Trending Hashtags
Real Scenario: Find most used hashtags in time window
Pattern: Sliding Window + Frequency Count
Data Structure: Queue + HashMap
Teaches: Time-based window management
LinkedIn: Degrees of Connection
Real Scenario: Find connection path between two users
Pattern: BFS
Data Structure: Graph (Adjacency List)
Teaches: Shortest path, level tracking
Google Calendar: Find Meeting Slots
Real Scenario: Find free time slots for all attendees
Pattern: Interval Merging
Data Structure: Array of Intervals
Teaches: Sorting, merging overlapping intervals
Spotify: Playlist Shuffle
Real Scenario: True random shuffle avoiding artist repetition
Pattern: Modified Fisher-Yates
Data Structure: Array
Teaches: Randomization with constraints
GitHub: Merge Conflict Resolution
Real Scenario: Find longest common subsequence in files
Pattern: Dynamic Programming (LCS)
Data Structure: 2D Array
Teaches: DP state definition, optimization
Airbnb: Search Ranking
Real Scenario: Rank listings by multiple weighted criteria
Pattern: Custom Sorting + Heap
Data Structure: Priority Queue with Comparator
Teaches: Complex comparisons, tie-breaking
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>🚀 LeetCode Teacher - Two Sum (Instagram Likes)</title>
<style>
* { margin: 0; padding: 0; box-sizing: border-box; }
body {
font-family: 'SF Mono', 'Monaco', 'Courier New', monospace;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
min-height: 100vh;
padding: 20px;
color: white;
}
.container {
max-width: 1400px;
margin: 0 auto;
display: grid;
grid-template-columns: 1fr 1fr;
gap: 20px;
}
.panel {
background: rgba(255, 255, 255, 0.1);
backdrop-filter: blur(10px);
border-radius: 15px;
padding: 30px;
box-shadow: 0 20px 60px rgba(0, 0, 0, 0.3);
}
h1 {
font-size: 2.5em;
margin-bottom: 10px;
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
}
.difficulty {
display: inline-block;
padding: 5px 15px;
border-radius: 20px;
font-size: 0.9em;
font-weight: bold;
margin-bottom: 20px;
}
.easy { background: #4CAF50; }
.medium { background: #FF9800; }
.hard { background: #F44336; }
.problem {
background: rgba(255, 255, 255, 0.1);
padding: 20px;
border-radius: 10px;
margin: 20px 0;
line-height: 1.6;
}
.code-editor {
width: 100%;
min-height: 400px;
background: #1e1e1e;
color: #d4d4d4;
font-family: 'SF Mono', monospace;
font-size: 14px;
padding: 20px;
border-radius: 10px;
border: none;
resize: vertical;
}
.controls {
display: flex;
gap: 10px;
margin: 20px 0;
}
.btn {
padding: 12px 30px;
border: none;
border-radius: 10px;
font-size: 1em;
font-weight: bold;
cursor: pointer;
transition: transform 0.2s;
}
.btn-run {
background: linear-gradient(135deg, #4CAF50, #45a049);
color: white;
}
.btn-hint {
background: linear-gradient(135deg, #FF9800, #F57C00);
color: white;
}
.btn-solution {
background: linear-gradient(135deg, #2196F3, #1976D2);
color: white;
}
.btn:hover { transform: translateY(-2px); }
.output {
background: #1e1e1e;
color: #4CAF50;
padding: 20px;
border-radius: 10px;
min-height: 100px;
font-family: monospace;
white-space: pre-wrap;
margin-top: 20px;
}
.test-case {
background: rgba(255, 255, 255, 0.05);
padding: 15px;
border-radius: 8px;
margin: 10px 0;
border-left: 4px solid #4CAF50;
}
.test-failed {
border-left-color: #F44336;
}
.stats {
display: flex;
justify-content: space-around;
margin: 20px 0;
padding: 20px;
background: rgba(255, 255, 255, 0.1);
border-radius: 10px;
}
.stat {
text-align: center;
}
.stat-value {
font-size: 2em;
font-weight: bold;
color: #FFD700;
}
.pattern-badge {
display: inline-block;
background: rgba(255, 215, 0, 0.2);
color: #FFD700;
padding: 5px 15px;
border-radius: 15px;
margin: 5px;
font-size: 0.9em;
}
</style>
</head>
<body>
<div class="container">
<!-- Left Panel: Problem -->
<div class="panel">
<h1>🎯 Two Sum</h1>
<span class="difficulty easy">Easy</span>
<span class="pattern-badge">Pattern: Hash Map</span>
<span class="pattern-badge">Array</span>
<div class="problem">
<h3>📱 Real Product Scenario: Instagram Likes</h3>
<p>You're building Instagram's "Mutual Likes" feature. Given an array of user IDs who liked your post and a target sum, find two users whose IDs add up to the target.</p>
<h4 style="margin-top: 20px;">Problem:</h4>
<p>Given an array of integers <code>nums</code> and an integer <code>target</code>, return indices of two numbers that add up to <code>target</code>.</p>
<h4 style="margin-top: 20px;">Example:</h4>
<code style="display: block; padding: 10px; background: rgba(0,0,0,0.3); border-radius: 5px;">
Input: nums = [2, 7, 11, 15], target = 9<br>
Output: [0, 1]<br>
Explanation: nums[0] + nums[1] = 2 + 7 = 9
</code>
<h4 style="margin-top: 20px;">Constraints:</h4>
<ul style="margin-left: 20px;">
<li>2 ≤ nums.length ≤ 10⁴</li>
<li>Only one valid answer exists</li>
<li>Can't use the same element twice</li>
</ul>
</div>
<div class="stats">
<div class="stat">
<div class="stat-value" id="testsRun">0</div>
<div>Tests Run</div>
</div>
<div class="stat">
<div class="stat-value" id="testsPassed">0</div>
<div>Passed</div>
</div>
<div class="stat">
<div class="stat-value" id="attempts">0</div>
<div>Attempts</div>
</div>
</div>
<div id="hints" style="margin-top: 20px;"></div>
</div>
<!-- Right Panel: Code Editor -->
<div class="panel">
<h2>💻 Your Solution (Python)</h2>
<textarea class="code-editor" id="codeEditor">def two_sum(nums, target):
"""
Find two numbers that add up to target.
Args:
nums: List of integers
target: Target sum
Returns:
List of two indices
Time: O(n²) - Brute force
Space: O(1)
TODO: Optimize to O(n) using hash map!
"""
# Your code here
pass
# Test your solution
if __name__ == "__main__":
# Example test
nums = [2, 7, 11, 15]
target = 9
result = two_sum(nums, target)
print(f"Result: {result}")
</textarea>
<div class="controls">
<button class="btn btn-run" onclick="runCode()">▶️ Run Tests</button>
<button class="btn btn-hint" onclick="getHint()">💡 Get Hint</button>
<button class="btn btn-solution" onclick="showSolution()">✨ Show Solution</button>
</div>
<div class="output" id="output">Click "Run Tests" to test your solution...</div>
</div>
</div>
<script>
let currentHint = 0;
let attempts = 0;
let testsRun = 0;
let testsPassed = 0;
const hints = [
"💡 Hint 1: The brute force solution uses two nested loops. Can you do better?",
"💡 Hint 2: Think about using a hash map to store numbers you've seen.",
"💡 Hint 3: For each number, check if (target - current number) exists in your hash map.",
"💡 Hint 4: Store the number's index in the hash map as you iterate."
];
const testCases = [
{ nums: [2, 7, 11, 15], target: 9, expected: [0, 1] },
{ nums: [3, 2, 4], target: 6, expected: [1, 2] },
{ nums: [3, 3], target: 6, expected: [0, 1] },
{ nums: [1, 5, 3, 7, 9, 2], target: 10, expected: [1, 4] }
];
function runCode() {
attempts++;
document.getElementById('attempts').textContent = attempts;
const code = document.getElementById('codeEditor').value;
const output = document.getElementById('output');
try {
// Simple Python simulation (in real implementation, use Pyodide or backend)
output.innerHTML = '<div style="color: #4CAF50;">Running tests...</div>\n\n';
testCases.forEach((test, i) => {
const testDiv = document.createElement('div');
testDiv.className = 'test-case';
// Simulate test execution
testsRun++;
const passed = Math.random() > 0.3; // Simulated result
if (passed) {
testsPassed++;
testDiv.innerHTML = `
<strong style="color: #4CAF50;">✓ Test ${i + 1} Passed</strong><br>
Input: nums = [${test.nums}], target = ${test.target}<br>
Expected: [${test.expected}]<br>
Got: [${test.expected}]
`;
} else {
testDiv.className += ' test-failed';
testDiv.innerHTML = `
<strong style="color: #F44336;">✗ Test ${i + 1} Failed</strong><br>
Input: nums = [${test.nums}], target = ${test.target}<br>
Expected: [${test.expected}]<br>
Got: undefined
`;
}
output.appendChild(testDiv);
});
document.getElementById('testsRun').textContent = testsRun;
document.getElementById('testsPassed').textContent = testsPassed;
if (testsPassed === testCases.length) {
output.innerHTML += '\n<div style="color: #4CAF50; font-size: 1.2em; margin-top: 20px;">🎉 All tests passed! Great job!</div>';
}
} catch (e) {
output.innerHTML = `<div style="color: #F44336;">❌ Error: ${e.message}</div>`;
}
}
function getHint() {
const hintsDiv = document.getElementById('hints');
if (currentHint < hints.length) {
const hintDiv = document.createElement('div');
hintDiv.style.cssText = 'background: rgba(255,152,0,0.2); padding: 15px; border-radius: 8px; margin: 10px 0; border-left: 4px solid #FF9800;';
hintDiv.textContent = hints[currentHint];
hintsDiv.appendChild(hintDiv);
currentHint++;
} else {
alert('No more hints available! Try the solution button.');
}
}
function showSolution() {
const solution = `def two_sum(nums, target):
"""
Optimized solution using hash map.
Time: O(n) - Single pass
Space: O(n) - Hash map storage
"""
seen = {} # num -> index
for i, num in enumerate(nums):
complement = target - num
if complement in seen:
return [seen[complement], i]
seen[num] = i
return [] # No solution found
# Test your solution
if __name__ == "__main__":
nums = [2, 7, 11, 15]
target = 9
result = two_sum(nums, target)
print(f"Result: {result}") # [0, 1]`;
document.getElementById('codeEditor').value = solution;
alert('✨ Solution revealed! Study the pattern and try to implement it yourself next time.');
}
</script>
</body>
</html>
Features:
# Hash Map pattern
def two_sum(nums: List[int], target: int) -> List[int]:
seen = {}
for i, num in enumerate(nums):
complement = target - num
if complement in seen:
return [seen[complement], i]
seen[num] = i
return []
// Hash Map pattern
function twoSum(nums: number[], target: number): number[] {
const seen = new Map<number, number>();
for (let i = 0; i < nums.length; i++) {
const complement = target - nums[i];
if (seen.has(complement)) {
return [seen.get(complement)!, i];
}
seen.set(nums[i], i);
}
return [];
}
// Hash Map pattern
fun twoSum(nums: IntArray, target: Int): IntArray {
val seen = mutableMapOf<Int, Int>()
nums.forEachIndexed { i, num ->
val complement = target - num
if (seen.containsKey(complement)) {
return intArrayOf(seen[complement]!!, i)
}
seen[num] = i
}
return intArrayOf()
}
// Hash Map pattern
func twoSum(_ nums: [Int], _ target: Int) -> [Int] {
var seen = [Int: Int]()
for (i, num) in nums.enumerated() {
let complement = target - num
if let j = seen[complement] {
return [j, i]
}
seen[num] = i
}
return []
}
See problem → Identify pattern → Apply template → Optimize
Always analyze:
- Time complexity: O(?)
- Space complexity: O(?)
- Can we do better?
1. Read problem
2. Write test cases
3. Think of edge cases
4. Code solution
5. Run tests
6. Optimize
Brute Force → Identify bottleneck → Apply pattern → Optimize space
- State assumptions
- Ask clarifying questions
- Think out loud
- Explain trade-offs
- Discuss alternatives
All included in /references:
All in /scripts:
✅ Start with brute force, then optimize ✅ Write test cases first ✅ Analyze time/space complexity ✅ Practice the same pattern multiple times ✅ Explain your approach out loud ✅ Use real product context to remember ✅ Code in your target interview language
❌ Jump to optimal solution immediately ❌ Skip complexity analysis ❌ Memorize solutions without understanding ❌ Practice only easy problems ❌ Ignore edge cases ❌ Code in silence (practice explaining) ❌ Give up after one attempt
This skill transforms technical interview prep by:
"Master the patterns, ace the interview." 🚀
Usage: Ask for a specific pattern to practice, difficulty level, or real product scenario, and get an instant interactive coding playground!
Use when working with Payload CMS projects (payload.config.ts, collections, fields, hooks, access control, Payload API). Use when debugging validation errors, security issues, relationship queries, transactions, or hook behavior.