Convert Flow SDK activities.ts to Output SDK steps.ts. Use when migrating activity functions to step definitions with typed parameters.
Converts Flow SDK activity functions to Output SDK step definitions with typed input/output schemas. Use this during migration when transforming activities.ts to steps.ts.
/plugin marketplace add growthxai/output-claude-plugins/plugin install growthxai-outputai-flow-migrator-plugins-outputai-flow-migrator@growthxai/output-claude-pluginsThis skill is limited to using the following tools:
This skill guides the conversion of Flow SDK activity functions (activities.ts) to Output SDK step definitions (steps.ts). This is one of the core migration tasks.
During Migration:
activities.ts file to steps.ts| Aspect | Flow SDK (activities.ts) | Output SDK (steps.ts) |
|---|---|---|
| Definition | Function with direct parameters | step() with inputSchema |
| Parameters | Individual function arguments | Single typed input object |
| Return Type | Direct Promise return | outputSchema validation |
| Imports | Various Flow SDK imports | @output.ai/core |
| LLM Calls | Custom completion functions | generateText(), generateObject() |
// activities.ts
import { z } from 'zod';
import { completion } from '@flow/sdk';
export async function analyzeDocument(
documentText: string,
analysisType: string,
maxLength?: number
): Promise<AnalysisResult> {
const prompt = buildPrompt( documentText, analysisType );
const response = await completion( {
model: 'gpt-4',
messages: [ { role: 'user', content: prompt } ],
maxTokens: maxLength || 2000
} );
return parseAnalysisResult( response );
}
// steps.ts
import { z, step } from '@output.ai/core';
import { generateObject } from '@output.ai/llm';
import { AnalysisResultSchema, AnalysisResult } from './types.js';
const AnalyzeDocumentInputSchema = z.object( {
documentText: z.string(),
analysisType: z.string(),
maxLength: z.number().optional()
} );
export const analyzeDocument = step( {
name: 'analyzeDocument',
inputSchema: AnalyzeDocumentInputSchema,
outputSchema: AnalysisResultSchema,
fn: async ( input ) => {
const { documentText, analysisType, maxLength } = input;
const result = await generateObject<AnalysisResult>( {
prompt: 'analyzeDocument@v1',
variables: {
documentText,
analysisType
},
schema: AnalysisResultSchema
} );
return result;
}
} );
List all exported functions in activities.ts:
grep -E "^export (async )?function" src/workflows/my-workflow/activities.ts
For each function, create a Zod schema for its parameters:
// Original function signature
async function processUser( userId: string, options: ProcessOptions ): Promise<Result>
// Convert to input schema
const ProcessUserInputSchema = z.object( {
userId: z.string(),
options: ProcessOptionsSchema
} );
If the function returns structured data, create an output schema:
// types.ts
export const ResultSchema = z.object( {
success: z.boolean(),
data: z.any().optional(),
error: z.string().optional()
} );
export type Result = z.infer<typeof ResultSchema>;
Wrap the function body in a step() definition:
export const processUser = step( {
name: 'processUser',
inputSchema: ProcessUserInputSchema,
outputSchema: ResultSchema,
fn: async ( input ) => {
const { userId, options } = input;
// Original function body here
}
} );
Replace Flow SDK completion calls with Output SDK generators:
// Flow SDK
const response = await completion( { model: 'gpt-4', messages: [...] } );
// Output SDK
const response = await generateText( {
prompt: 'myPrompt@v1',
variables: { ... }
} );
import { z } from 'zod';
import { completion } from '@flow/sdk';
const UserSchema = z.object( {
id: z.string(),
name: z.string(),
email: z.string()
} );
type User = z.infer<typeof UserSchema>;
export async function fetchUser( userId: string ): Promise<User> {
const response = await fetch( `https://api.example.com/users/${userId}` );
return response.json();
}
export async function generateGreeting(
user: User,
style: 'formal' | 'casual'
): Promise<string> {
const prompt = style === 'formal'
? `Write a formal greeting for ${user.name}`
: `Write a casual greeting for ${user.name}`;
const response = await completion( {
model: 'gpt-4',
messages: [ { role: 'user', content: prompt } ]
} );
return response.content;
}
export async function sendEmail(
to: string,
subject: string,
body: string
): Promise<{ sent: boolean; messageId: string }> {
const result = await emailService.send( { to, subject, body } );
return { sent: true, messageId: result.id };
}
import { z, step } from '@output.ai/core';
import { generateText } from '@output.ai/llm';
import { UserSchema, User } from './types.js';
// Step 1: Fetch User
const FetchUserInputSchema = z.object( {
userId: z.string()
} );
export const fetchUser = step( {
name: 'fetchUser',
inputSchema: FetchUserInputSchema,
outputSchema: UserSchema,
fn: async ( input ) => {
const { userId } = input;
const response = await fetch( `https://api.example.com/users/${userId}` );
return response.json();
}
} );
// Step 2: Generate Greeting
const GenerateGreetingInputSchema = z.object( {
user: UserSchema,
style: z.enum( [ 'formal', 'casual' ] )
} );
export const generateGreeting = step( {
name: 'generateGreeting',
inputSchema: GenerateGreetingInputSchema,
outputSchema: z.string(),
fn: async ( input ) => {
const { user, style } = input;
const greeting = await generateText( {
prompt: 'generateGreeting@v1',
variables: {
userName: user.name,
style
}
} );
return greeting;
}
} );
// Step 3: Send Email
const SendEmailInputSchema = z.object( {
to: z.string(),
subject: z.string(),
body: z.string()
} );
const SendEmailOutputSchema = z.object( {
sent: z.boolean(),
messageId: z.string()
} );
export const sendEmail = step( {
name: 'sendEmail',
inputSchema: SendEmailInputSchema,
outputSchema: SendEmailOutputSchema,
fn: async ( input ) => {
const { to, subject, body } = input;
const result = await emailService.send( { to, subject, body } );
return { sent: true, messageId: result.id };
}
} );
import { z } from '@output.ai/core';
export const UserSchema = z.object( {
id: z.string(),
name: z.string(),
email: z.string()
} );
export type User = z.infer<typeof UserSchema>;
Steps are called with a single input object:
// Flow SDK (direct parameters)
const user = await fetchUser( userId );
const greeting = await generateGreeting( user, 'formal' );
// Output SDK (object parameter)
const user = await fetchUser( { userId } );
const greeting = await generateGreeting( { user, style: 'formal' } );
// WRONG
fn: async ( userId, name ) => { ... }
// CORRECT
fn: async ( input ) => {
const { userId, name } = input;
...
}
// WRONG
import { UserSchema } from './types';
// CORRECT
import { UserSchema } from './types.js';
Keep schemas and types in types.ts for reuse across steps and workflows.
@output.ai/core for zgenerateText() or generateObject().js extensionflow-convert-workflow-definition - Workflow conversionflow-convert-prompts-to-files - Prompt file creationflow-error-zod-import - Zod import issuesflow-error-eslint-compliance - Code style complianceCreating algorithmic art using p5.js with seeded randomness and interactive parameter exploration. Use this when users request creating art using code, generative art, algorithmic art, flow fields, or particle systems. Create original algorithmic art rather than copying existing artists' work to avoid copyright violations.
Applies Anthropic's official brand colors and typography to any sort of artifact that may benefit from having Anthropic's look-and-feel. Use it when brand colors or style guidelines, visual formatting, or company design standards apply.
Create beautiful visual art in .png and .pdf documents using design philosophy. You should use this skill when the user asks to create a poster, piece of art, design, or other static piece. Create original visual designs, never copying existing artists' work to avoid copyright violations.