Use when "deploying ML models", "MLOps", "model serving", "feature stores", "model monitoring", or asking about "PyTorch deployment", "TensorFlow production", "RAG systems", "LLM integration", "ML infrastructure"
Deploys production ML models with MLOps pipelines, monitoring, and LLM integration.
/plugin marketplace add eyadsibai/ltk/plugin install ltk@ltk-marketplaceThis skill inherits all available tools. When active, it can use any tool Claude has access to.
Production-grade ML/AI systems, MLOps, and model deployment.
| Category | Tools |
|---|---|
| ML Frameworks | PyTorch, TensorFlow, Scikit-learn, XGBoost |
| LLM Frameworks | LangChain, LlamaIndex, DSPy |
| Data Tools | Spark, Airflow, dbt, Kafka, Databricks |
| Deployment | Docker, Kubernetes, AWS/GCP/Azure |
| Monitoring | MLflow, Weights & Biases, Prometheus |
| Databases | PostgreSQL, BigQuery, Snowflake, Pinecone |
# Model serving with FastAPI
from fastapi import FastAPI
import torch
app = FastAPI()
model = torch.load("model.pth")
@app.post("/predict")
async def predict(data: dict):
tensor = preprocess(data)
with torch.no_grad():
prediction = model(tensor)
return {"prediction": prediction.tolist()}
# Feast feature store
from feast import FeatureStore
store = FeatureStore(repo_path=".")
features = store.get_online_features(
features=["user_features:age", "user_features:location"],
entity_rows=[{"user_id": 123}]
).to_dict()
# Drift detection
from evidently import ColumnMapping
from evidently.report import Report
from evidently.metric_preset import DataDriftPreset
report = Report(metrics=[DataDriftPreset()])
report.run(reference_data=ref_df, current_data=curr_df)
| Metric | Target |
|---|---|
| P50 Latency | < 50ms |
| P95 Latency | < 100ms |
| P99 Latency | < 200ms |
| Throughput | > 1000 RPS |
| Availability | 99.9% |
# Basic RAG with LangChain
from langchain.vectorstores import Pinecone
from langchain.embeddings import OpenAIEmbeddings
from langchain.chains import RetrievalQA
vectorstore = Pinecone.from_existing_index(
index_name="docs",
embedding=OpenAIEmbeddings()
)
qa = RetrievalQA.from_chain_type(
llm=llm,
retriever=vectorstore.as_retriever()
)
# Structured prompts with DSPy
import dspy
class QA(dspy.Signature):
"""Answer questions based on context."""
context = dspy.InputField()
question = dspy.InputField()
answer = dspy.OutputField()
qa = dspy.Predict(QA)
# Development
python -m pytest tests/ -v --cov
python -m black src/
python -m pylint src/
# Training
python scripts/train.py --config prod.yaml
mlflow run . -P epochs=10
# Deployment
docker build -t model:v1 .
kubectl apply -f k8s/model-serving.yaml
# Monitoring
mlflow ui --port 5000
This skill should be used when the user asks about libraries, frameworks, API references, or needs code examples. Activates for setup questions, code generation involving libraries, or mentions of specific frameworks like React, Vue, Next.js, Prisma, Supabase, etc.
Applies Anthropic's official brand colors and typography to any sort of artifact that may benefit from having Anthropic's look-and-feel. Use it when brand colors or style guidelines, visual formatting, or company design standards apply.
Creating algorithmic art using p5.js with seeded randomness and interactive parameter exploration. Use this when users request creating art using code, generative art, algorithmic art, flow fields, or particle systems. Create original algorithmic art rather than copying existing artists' work to avoid copyright violations.