/*============================================================================*/
Replicates published ML baseline experiments with exact reproducibility (±1% tolerance) for research validation.
/plugin marketplace add DNYoussef/context-cascade/plugin install dnyoussef-context-cascade@DNYoussef/context-cascadeThis skill inherits all available tools. When active, it can use any tool Claude has access to.
baseline-replication-process.dotexamples/example-1-basic-replication.mdexamples/example-2-statistical-tests.mdexamples/example-3-ablation-studies.mdgraphviz/baseline-replication-process.dotgraphviz/workflow.dotmanifest.jsonreadme.mdreferences/acm-compliance.mdreferences/index.mdreferences/statistical-methods.md/============================================================================/ /* SKILL SKILL :: VERILINGUA x VERIX EDITION / /============================================================================*/
name: SKILL version: 1.0.0 description: | [assert|neutral] SKILL skill for research workflows [ground:given] [conf:0.95] [state:confirmed] category: research tags:
/----------------------------------------------------------------------------/ /* S0 META-IDENTITY / /----------------------------------------------------------------------------*/
[define|neutral] SKILL := { name: "SKILL", category: "research", version: "1.0.0", layer: L1 } [ground:given] [conf:1.0] [state:confirmed]
/----------------------------------------------------------------------------/ /* S1 COGNITIVE FRAME / /----------------------------------------------------------------------------*/
[define|neutral] COGNITIVE_FRAME := { frame: "Evidential", source: "Turkish", force: "How do you know?" } [ground:cognitive-science] [conf:0.92] [state:confirmed]
Kaynak dogrulama modu etkin.
/----------------------------------------------------------------------------/ /* S2 TRIGGER CONDITIONS / /----------------------------------------------------------------------------*/
[define|neutral] TRIGGER_POSITIVE := { keywords: ["SKILL", "research", "workflow"], context: "user needs SKILL capability" } [ground:given] [conf:1.0] [state:confirmed]
/----------------------------------------------------------------------------/ /* S3 CORE CONTENT / /----------------------------------------------------------------------------*/
name: baseline-replication
description: "Replicate published ML baseline experiments with exact reproducibility
\ (\xB11% tolerance) for Deep Research SOP Pipeline D. Use when validating baselines,
\ reproducing experiments, verifying published results, or preparing for novel method
\ development."
version: 1.0.0
category: research
tags:
Kaynak dogrulama modu etkin.
Replicates published machine learning baseline methods with exact reproducibility, ensuring results match within ±1% tolerance. This skill implements Deep Research SOP Pipeline D baseline validation, which is a prerequisite for developing novel methods.
# 1. Specify baseline to replicate
BASELINE_PAPER="BERT: Pre-training of Deep Bidirectional Transformers (Devlin et al., 2019)"
BASELINE_CODE="https://github.com/google-research/bert"
TARGET_METRIC="Accuracy on SQuAD 2.0"
PUBLISHED_RESULT=0.948
# 2. Run replication workflow
./scripts/replicate-baseline.sh \
--paper "$BASELINE_PAPER" \
--code "$BASELINE_CODE" \
--metric "$TARGET_METRIC" \
--expected "$PUBLISHED_RESULT"
# 3. Review results
cat output/baseline-bert/replication-report.md
Expected output:
✓ Paper analyzed: Extracted 47 hyperparameters
✓ Dataset validated: SQuAD 2.0 matches baseline
✓ Implementation complete: 12 BERT layers, 110M parameters
✓ Training complete: 3 epochs, 26.3 GPU hours
✓ Results validated: 0.945 vs 0.948 (within ±1% tolerance)
✓ Reproducibility verified: 3/3 fresh reproductions successful
→ Quality Gate 1: APPROVED
# Coordinate with researcher agent
./scripts/analyze-paper.sh --paper "arXiv:2103.00020"
The script extracts:
Output: baseline-specification.md with all extracted details
# Check for missing hyperparameters
./scripts/validate-spec.sh baseline-specification.md
Common Missing Details:
If details missing:
# Validate dataset matches baseline specs
./scripts/validate-dataset.sh \
--dataset "SQuAD 2.0" \
--splits "train:130k,dev:12k" \
--preprocessing "WordPiece tokenization, max_length=384"
data-steward checks:
Output: dataset-validation-report.md
/----------------------------------------------------------------------------/ /* S4 SUCCESS CRITERIA / /----------------------------------------------------------------------------*/
[define|neutral] SUCCESS_CRITERIA := { primary: "Skill execution completes successfully", quality: "Output meets quality thresholds", verification: "Results validated against requirements" } [ground:given] [conf:1.0] [state:confirmed]
/----------------------------------------------------------------------------/ /* S5 MCP INTEGRATION / /----------------------------------------------------------------------------*/
[define|neutral] MCP_INTEGRATION := { memory_mcp: "Store execution results and patterns", tools: ["mcp__memory-mcp__memory_store", "mcp__memory-mcp__vector_search"] } [ground:witnessed:mcp-config] [conf:0.95] [state:confirmed]
/----------------------------------------------------------------------------/ /* S6 MEMORY NAMESPACE / /----------------------------------------------------------------------------*/
[define|neutral] MEMORY_NAMESPACE := { pattern: "skills/research/SKILL/{project}/{timestamp}", store: ["executions", "decisions", "patterns"], retrieve: ["similar_tasks", "proven_patterns"] } [ground:system-policy] [conf:1.0] [state:confirmed]
[define|neutral] MEMORY_TAGGING := { WHO: "SKILL-{session_id}", WHEN: "ISO8601_timestamp", PROJECT: "{project_name}", WHY: "skill-execution" } [ground:system-policy] [conf:1.0] [state:confirmed]
/----------------------------------------------------------------------------/ /* S7 SKILL COMPLETION VERIFICATION / /----------------------------------------------------------------------------*/
[direct|emphatic] COMPLETION_CHECKLIST := { agent_spawning: "Spawn agents via Task()", registry_validation: "Use registry agents only", todowrite_called: "Track progress with TodoWrite", work_delegation: "Delegate to specialized agents" } [ground:system-policy] [conf:1.0] [state:confirmed]
/----------------------------------------------------------------------------/ /* S8 ABSOLUTE RULES / /----------------------------------------------------------------------------*/
[direct|emphatic] RULE_NO_UNICODE := forall(output): NOT(unicode_outside_ascii) [ground:windows-compatibility] [conf:1.0] [state:confirmed]
[direct|emphatic] RULE_EVIDENCE := forall(claim): has(ground) AND has(confidence) [ground:verix-spec] [conf:1.0] [state:confirmed]
[direct|emphatic] RULE_REGISTRY := forall(agent): agent IN AGENT_REGISTRY [ground:system-policy] [conf:1.0] [state:confirmed]
/----------------------------------------------------------------------------/ /* PROMISE / /----------------------------------------------------------------------------*/
[commit|confident] <promise>SKILL_VERILINGUA_VERIX_COMPLIANT</promise> [ground:self-validation] [conf:0.99] [state:confirmed]
Create distinctive, production-grade frontend interfaces with high design quality. Use this skill when the user asks to build web components, pages, or applications. Generates creative, polished code that avoids generic AI aesthetics.
This skill should be used when the user asks to "create a hookify rule", "write a hook rule", "configure hookify", "add a hookify rule", or needs guidance on hookify rule syntax and patterns.