/*============================================================================*/
Diagnoses ML training failures and proposes evidence-based fixes for loss divergence, mode collapse, and gradient issues.
/plugin marketplace add DNYoussef/context-cascade/plugin install dnyoussef-context-cascade@DNYoussef/context-cascadeThis skill inherits all available tools. When active, it can use any tool Claude has access to.
README.mdagents/ml-debugger-specialist.promptexamples/convergence-debugging.pyexamples/overfitting-detection.pyexamples/vanishing-gradients.pymanifest.jsonresources/readme.mdresources/scripts/gradient-debugger.pyresources/scripts/loss-analyzer.pyresources/scripts/overfitting-detector.jsresources/scripts/training-monitor.shresources/templates/debug-config.yamlresources/templates/loss-curve-template.jsonresources/templates/training-metrics.yamltests/test-gradient-analysis.pytests/test-loss-divergence.pytests/test-mode-collapse.js/============================================================================/ /* ML-TRAINING-DEBUGGER SKILL :: VERILINGUA x VERIX EDITION / /============================================================================*/
name: ml-training-debugger version: 1.0.0 description: | [assert|neutral] Version: 1.0.0 [ground:given] [conf:0.95] [state:confirmed] category: specialists tags:
/----------------------------------------------------------------------------/ /* S0 META-IDENTITY / /----------------------------------------------------------------------------*/
[define|neutral] SKILL := { name: "ml-training-debugger", category: "specialists", version: "1.0.0", layer: L1 } [ground:given] [conf:1.0] [state:confirmed]
/----------------------------------------------------------------------------/ /* S1 COGNITIVE FRAME / /----------------------------------------------------------------------------*/
[define|neutral] COGNITIVE_FRAME := { frame: "Honorific", source: "Japanese", force: "Who is the audience?" } [ground:cognitive-science] [conf:0.92] [state:confirmed]
Kaynak dogrulama modu etkin.
/----------------------------------------------------------------------------/ /* S2 TRIGGER CONDITIONS / /----------------------------------------------------------------------------*/
[define|neutral] TRIGGER_POSITIVE := { keywords: ["ml-training-debugger", "specialists", "workflow"], context: "user needs ml-training-debugger capability" } [ground:given] [conf:1.0] [state:confirmed]
/----------------------------------------------------------------------------/ /* S3 CORE CONTENT / /----------------------------------------------------------------------------*/
Kaynak dogrulama modu etkin.
Version: 1.0.0 Type: Agent-based skill with SDK implementation Domain: Machine learning training diagnostics
Diagnose machine learning training failures including loss divergence, mode collapse, gradient issues, architecture problems, and optimization failures. This skill spawns a specialist ML debugging agent that systematically analyzes training artifacts to identify root causes and propose evidence-based fixes.
Use this skill when encountering training failures, when loss curves exhibit pathological behavior, when models produce degenerate outputs, when experiencing GPU memory issues, or when hyperparameter tuning produces inconsistent results.
This skill activates when users request:
The skill handles:
The ML debugging agent handles:
/----------------------------------------------------------------------------/ /* S4 SUCCESS CRITERIA / /----------------------------------------------------------------------------*/
[define|neutral] SUCCESS_CRITERIA := { primary: "Skill execution completes successfully", quality: "Output meets quality thresholds", verification: "Results validated against requirements" } [ground:given] [conf:1.0] [state:confirmed]
/----------------------------------------------------------------------------/ /* S5 MCP INTEGRATION / /----------------------------------------------------------------------------*/
[define|neutral] MCP_INTEGRATION := { memory_mcp: "Store execution results and patterns", tools: ["mcp__memory-mcp__memory_store", "mcp__memory-mcp__vector_search"] } [ground:witnessed:mcp-config] [conf:0.95] [state:confirmed]
/----------------------------------------------------------------------------/ /* S6 MEMORY NAMESPACE / /----------------------------------------------------------------------------*/
[define|neutral] MEMORY_NAMESPACE := { pattern: "skills/specialists/ml-training-debugger/{project}/{timestamp}", store: ["executions", "decisions", "patterns"], retrieve: ["similar_tasks", "proven_patterns"] } [ground:system-policy] [conf:1.0] [state:confirmed]
[define|neutral] MEMORY_TAGGING := { WHO: "ml-training-debugger-{session_id}", WHEN: "ISO8601_timestamp", PROJECT: "{project_name}", WHY: "skill-execution" } [ground:system-policy] [conf:1.0] [state:confirmed]
/----------------------------------------------------------------------------/ /* S7 SKILL COMPLETION VERIFICATION / /----------------------------------------------------------------------------*/
[direct|emphatic] COMPLETION_CHECKLIST := { agent_spawning: "Spawn agents via Task()", registry_validation: "Use registry agents only", todowrite_called: "Track progress with TodoWrite", work_delegation: "Delegate to specialized agents" } [ground:system-policy] [conf:1.0] [state:confirmed]
/----------------------------------------------------------------------------/ /* S8 ABSOLUTE RULES / /----------------------------------------------------------------------------*/
[direct|emphatic] RULE_NO_UNICODE := forall(output): NOT(unicode_outside_ascii) [ground:windows-compatibility] [conf:1.0] [state:confirmed]
[direct|emphatic] RULE_EVIDENCE := forall(claim): has(ground) AND has(confidence) [ground:verix-spec] [conf:1.0] [state:confirmed]
[direct|emphatic] RULE_REGISTRY := forall(agent): agent IN AGENT_REGISTRY [ground:system-policy] [conf:1.0] [state:confirmed]
/----------------------------------------------------------------------------/ /* PROMISE / /----------------------------------------------------------------------------*/
[commit|confident] <promise>ML_TRAINING_DEBUGGER_VERILINGUA_VERIX_COMPLIANT</promise> [ground:self-validation] [conf:0.99] [state:confirmed]
This skill should be used when the user asks to "create a hookify rule", "write a hook rule", "configure hookify", "add a hookify rule", or needs guidance on hookify rule syntax and patterns.
Create distinctive, production-grade frontend interfaces with high design quality. Use this skill when the user asks to build web components, pages, or applications. Generates creative, polished code that avoids generic AI aesthetics.