/*============================================================================*/
Diagnoses and fixes ML training issues like loss divergence, overfitting, and slow convergence.
/plugin marketplace add DNYoussef/context-cascade/plugin install dnyoussef-context-cascade@DNYoussef/context-cascadeThis skill inherits all available tools. When active, it can use any tool Claude has access to.
process-diagram.gvprocess.mdreadme.md/============================================================================/ /* WHEN-DEBUGGING-ML-TRAINING-USE-ML-TRAINING-DEBUGGER SKILL :: VERILINGUA x VERIX EDITION / /============================================================================*/
name: when-debugging-ml-training-use-ml-training-debugger version: 1.0.0 description: | [assert|neutral] Debug ML training issues and optimize performance including loss divergence, overfitting, and slow convergence [ground:given] [conf:0.95] [state:confirmed] category: machine-learning tags:
/----------------------------------------------------------------------------/ /* S0 META-IDENTITY / /----------------------------------------------------------------------------*/
[define|neutral] SKILL := { name: "when-debugging-ml-training-use-ml-training-debugger", category: "machine-learning", version: "1.0.0", layer: L1 } [ground:given] [conf:1.0] [state:confirmed]
/----------------------------------------------------------------------------/ /* S1 COGNITIVE FRAME / /----------------------------------------------------------------------------*/
[define|neutral] COGNITIVE_FRAME := { frame: "Evidential", source: "Turkish", force: "How do you know?" } [ground:cognitive-science] [conf:0.92] [state:confirmed]
Kaynak dogrulama modu etkin.
/----------------------------------------------------------------------------/ /* S2 TRIGGER CONDITIONS / /----------------------------------------------------------------------------*/
[define|neutral] TRIGGER_POSITIVE := { keywords: ["when-debugging-ml-training-use-ml-training-debugger", "machine-learning", "workflow"], context: "user needs when-debugging-ml-training-use-ml-training-debugger capability" } [ground:given] [conf:1.0] [state:confirmed]
/----------------------------------------------------------------------------/ /* S3 CORE CONTENT / /----------------------------------------------------------------------------*/
Kaynak dogrulama modu etkin.
Systematic debugging workflow for ML training issues including loss divergence, overfitting, slow convergence, gradient problems, and performance optimization.
Identify the specific training problem
Step 1.1: Analyze Training Curves
import json
import numpy as np
# Load training history
with open('training_history.json', 'r') as f:
history = json.load(f)
# Diagnose issues
diagnosis = {
'loss_divergence': check_loss_divergence(history['loss']),
'overfitting': check_overfitting(history['loss'], history['val_loss']),
'slow_convergence': check_convergence_rate(history['loss']),
'gradient_issues': check_gradient_health(history),
'nan_values': any(np.isnan(history['loss']))
}
def check_loss_divergence(losses):
# Loss increasing over time
if len(losses) > 10:
recent_trend = np.mean(losses[-5:]) > np.mean(losses[-10:-5])
/*----------------------------------------------------------------------------*/
/* S4 SUCCESS CRITERIA */
/*----------------------------------------------------------------------------*/
[define|neutral] SUCCESS_CRITERIA := {
primary: "Skill execution completes successfully",
quality: "Output meets quality thresholds",
verification: "Results validated against requirements"
} [ground:given] [conf:1.0] [state:confirmed]
/*----------------------------------------------------------------------------*/
/* S5 MCP INTEGRATION */
/*----------------------------------------------------------------------------*/
[define|neutral] MCP_INTEGRATION := {
memory_mcp: "Store execution results and patterns",
tools: ["mcp__memory-mcp__memory_store", "mcp__memory-mcp__vector_search"]
} [ground:witnessed:mcp-config] [conf:0.95] [state:confirmed]
/*----------------------------------------------------------------------------*/
/* S6 MEMORY NAMESPACE */
/*----------------------------------------------------------------------------*/
[define|neutral] MEMORY_NAMESPACE := {
pattern: "skills/machine-learning/when-debugging-ml-training-use-ml-training-debugger/{project}/{timestamp}",
store: ["executions", "decisions", "patterns"],
retrieve: ["similar_tasks", "proven_patterns"]
} [ground:system-policy] [conf:1.0] [state:confirmed]
[define|neutral] MEMORY_TAGGING := {
WHO: "when-debugging-ml-training-use-ml-training-debugger-{session_id}",
WHEN: "ISO8601_timestamp",
PROJECT: "{project_name}",
WHY: "skill-execution"
} [ground:system-policy] [conf:1.0] [state:confirmed]
/*----------------------------------------------------------------------------*/
/* S7 SKILL COMPLETION VERIFICATION */
/*----------------------------------------------------------------------------*/
[direct|emphatic] COMPLETION_CHECKLIST := {
agent_spawning: "Spawn agents via Task()",
registry_validation: "Use registry agents only",
todowrite_called: "Track progress with TodoWrite",
work_delegation: "Delegate to specialized agents"
} [ground:system-policy] [conf:1.0] [state:confirmed]
/*----------------------------------------------------------------------------*/
/* S8 ABSOLUTE RULES */
/*----------------------------------------------------------------------------*/
[direct|emphatic] RULE_NO_UNICODE := forall(output): NOT(unicode_outside_ascii) [ground:windows-compatibility] [conf:1.0] [state:confirmed]
[direct|emphatic] RULE_EVIDENCE := forall(claim): has(ground) AND has(confidence) [ground:verix-spec] [conf:1.0] [state:confirmed]
[direct|emphatic] RULE_REGISTRY := forall(agent): agent IN AGENT_REGISTRY [ground:system-policy] [conf:1.0] [state:confirmed]
/*----------------------------------------------------------------------------*/
/* PROMISE */
/*----------------------------------------------------------------------------*/
[commit|confident] <promise>WHEN_DEBUGGING_ML_TRAINING_USE_ML_TRAINING_DEBUGGER_VERILINGUA_VERIX_COMPLIANT</promise> [ground:self-validation] [conf:0.99] [state:confirmed]
This skill should be used when the user asks to "create a hookify rule", "write a hook rule", "configure hookify", "add a hookify rule", or needs guidance on hookify rule syntax and patterns.
Create distinctive, production-grade frontend interfaces with high design quality. Use this skill when the user asks to build web components, pages, or applications. Generates creative, polished code that avoids generic AI aesthetics.