Implement ReasoningBank adaptive learning with AgentDBs 150x faster vector database. Includes trajectory tracking, verdict judgment, memory distillation, and pattern recognition. Use when building self-learning agents, optimizing decision-making, or implementing experience replay systems.
/plugin marketplace add DNYoussef/context-cascade/plugin install dnyoussef-context-cascade@DNYoussef/context-cascadeThis skill inherits all available tools. When active, it can use any tool Claude has access to.
SKILL-meta.yamlexamples/data-migration-example.jsexamples/pattern-learning-example.jsexamples/trajectory-optimization-example.jsresources/agentdb-config.yamlresources/learning-optimizer.pyresources/learning-params.yamlresources/migration-tool.pyresources/pattern-matcher.jsresources/pattern-schema.jsonresources/trajectory-tracker.shtests/test-migration.jstests/test-pattern-matching.jstests/test-trajectory-tracking.shBefore writing ANY code, you MUST check:
.claude/library/catalog.json.claude/docs/inventories/LIBRARY-PATTERNS-GUIDE.mdD:\Projects\*| Match | Action |
|---|---|
| Library >90% | REUSE directly |
| Library 70-90% | ADAPT minimally |
| Pattern exists | FOLLOW pattern |
| In project | EXTRACT |
| No match | BUILD (add to library after) |
Provides ReasoningBank adaptive learning patterns using AgentDB's high-performance backend (150x-12,500x faster). Enables agents to learn from experiences, judge outcomes, distill memories, and improve decision-making over time with 100% backward compatibility.
Performance: 150x faster pattern retrieval, 500x faster batch operations, <1ms memory access.
# Initialize AgentDB for ReasoningBank
npx agentdb@latest init ./.agentdb/reasoningbank.db --dimension 1536
# Start MCP server for Claude Code integration
npx agentdb@latest mcp
claude mcp add agentdb npx agentdb@latest mcp
# Automatic migration with validation
npx agentdb@latest migrate --source .swarm/memory.db
# Verify migration
npx agentdb@latest stats ./.agentdb/reasoningbank.db
import { createAgentDBAdapter, computeEmbedding } from 'agentic-flow/reasoningbank';
// Initialize ReasoningBank with AgentDB
const rb = await createAgentDBAdapter({
dbPath: '.agentdb/reasoningbank.db',
enableLearning: true, // Enable learning plugins
enableReasoning: true, // Enable reasoning agents
cacheSize: 1000, // 1000 pattern cache
});
// Store successful experience
const query = "How to optimize database queries?";
const embedding = await computeEmbedding(query);
await rb.insertPattern({
id: '',
type: 'experience',
domain: 'database-optimization',
pattern_data: JSON.stringify({
embedding,
pattern: {
query,
approach: 'indexing + query optimization',
outcome: 'success',
metrics: { latency_reduction: 0.85 }
}
}),
confidence: 0.95,
usage_count: 1,
success_count: 1,
created_at: Date.now(),
last_used: Date.now(),
});
// Retrieve similar experiences with reasoning
const result = await rb.retrieveWithReasoning(embedding, {
domain: 'database-optimization',
k: 5,
useMMR: true, // Diverse results
synthesizeContext: true, // Rich context synthesis
});
console.log('Memories:', result.memories);
console.log('Context:', result.context);
console.log('Patterns:', result.patterns);
Track agent execution paths and outcomes:
// Record trajectory (sequence of actions)
const trajectory = {
task: 'optimize-api-endpoint',
steps: [
{ action: 'analyze-bottleneck', result: 'found N+1 query' },
{ action: 'add-eager-loading', result: 'reduced queries' },
{ action: 'add-caching', result: 'improved latency' }
],
outcome: 'success',
metrics: { latency_before: 2500, latency_after: 150 }
};
const embedding = await computeEmbedding(JSON.stringify(trajectory));
await rb.insertPattern({
id: '',
type: 'trajectory',
domain: 'api-optimization',
pattern_data: JSON.stringify({ embedding, pattern: trajectory }),
confidence: 0.9,
usage_count: 1,
success_count: 1,
created_at: Date.now(),
last_used: Date.now(),
});
Judge whether a trajectory was successful:
// Retrieve similar past trajectories
const similar = await rb.retrieveWithReasoning(queryEmbedding, {
domain: 'api-optimization',
k: 10,
});
// Judge based on similarity to successful patterns
const verdict = similar.memories.filter(m =>
m.pattern.outcome === 'success' &&
m.similarity > 0.8
).length > 5 ? 'likely_success' : 'needs_review';
console.log('Verdict:', verdict);
console.log('Confidence:', similar.memories[0]?.similarity || 0);
Consolidate similar experiences into patterns:
// Get all experiences in domain
const experiences = await rb.retrieveWithReasoning(embedding, {
domain: 'api-optimization',
k: 100,
optimizeMemory: true, // Automatic consolidation
});
// Distill into high-level pattern
const distilledPattern = {
domain: 'api-optimization',
pattern: 'For N+1 queries: add eager loading, then cache',
success_rate: 0.92,
sample_size: experiences.memories.length,
confidence: 0.95
};
await rb.insertPattern({
id: '',
type: 'distilled-pattern',
domain: 'api-optimization',
pattern_data: JSON.stringify({
embedding: await computeEmbedding(JSON.stringify(distilledPattern)),
pattern: distilledPattern
}),
confidence: 0.95,
usage_count: 0,
success_count: 0,
created_at: Date.now(),
last_used: Date.now(),
});
AgentDB provides 4 reasoning modules that enhance ReasoningBank:
Find similar successful patterns:
const result = await rb.retrieveWithReasoning(queryEmbedding, {
domain: 'problem-solving',
k: 10,
useMMR: true, // Maximal Marginal Relevance for diversity
});
// PatternMatcher returns diverse, relevant memories
result.memories.forEach(mem => {
console.log(`Pattern: ${mem.pattern.approach}`);
console.log(`Similarity: ${mem.similarity}`);
console.log(`Success Rate: ${mem.success_count / mem.usage_count}`);
});
Generate rich context from multiple memories:
const result = await rb.retrieveWithReasoning(queryEmbedding, {
domain: 'code-optimization',
synthesizeContext: true, // Enable context synthesis
k: 5,
});
// ContextSynthesizer creates coherent narrative
console.log('Synthesized Context:', result.context);
// "Based on 5 similar optimizations, the most effective approach
// involves profiling, identifying bottlenecks, and applying targeted
// improvements. Success rate: 87%"
Automatically consolidate and prune:
const result = await rb.retrieveWithReasoning(queryEmbedding, {
domain: 'testing',
optimizeMemory: true, // Enable automatic optimization
});
// MemoryOptimizer consolidates similar patterns and prunes low-quality
console.log('Optimizations:', result.optimizations);
// { consolidated: 15, pruned: 3, improved_quality: 0.12 }
Filter by quality and relevance:
const result = await rb.retrieveWithReasoning(queryEmbedding, {
domain: 'debugging',
k: 20,
minConfidence: 0.8, // Only high-confidence experiences
});
// ExperienceCurator returns only quality experiences
result.memories.forEach(mem => {
console.log(`Confidence: ${mem.confidence}`);
console.log(`Success Rate: ${mem.success_count / mem.usage_count}`);
});
AgentDB maintains 100% backward compatibility with legacy ReasoningBank:
import {
retrieveMemories,
judgeTrajectory,
distillMemories
} from 'agentic-flow/reasoningbank';
// Legacy API works unchanged (uses AgentDB backend automatically)
const memories = await retrieveMemories(query, {
domain: 'code-generation',
agent: 'coder'
});
const verdict = await judgeTrajectory(trajectory, query);
const newMemories = await distillMemories(
trajectory,
verdict,
query,
{ domain: 'code-generation' }
);
Organize memories by abstraction level:
// Low-level: Specific implementation
await rb.insertPattern({
type: 'concrete',
domain: 'debugging/null-pointer',
pattern_data: JSON.stringify({
embedding,
pattern: { bug: 'NPE in UserService.getUser()', fix: 'Add null check' }
}),
confidence: 0.9,
// ...
});
// Mid-level: Pattern across similar cases
await rb.insertPattern({
type: 'pattern',
domain: 'debugging',
pattern_data: JSON.stringify({
embedding,
pattern: { category: 'null-pointer', approach: 'defensive-checks' }
}),
confidence: 0.85,
// ...
});
// High-level: General principle
await rb.insertPattern({
type: 'principle',
domain: 'software-engineering',
pattern_data: JSON.stringify({
embedding,
pattern: { principle: 'fail-fast with clear errors' }
}),
confidence: 0.95,
// ...
});
Transfer learning across domains:
// Learn from backend optimization
const backendExperience = await rb.retrieveWithReasoning(embedding, {
domain: 'backend-optimization',
k: 10,
});
// Apply to frontend optimization
const transferredKnowledge = backendExperience.memories.map(mem => ({
...mem,
domain: 'frontend-optimization',
adapted: true,
}));
# Export trajectories and patterns
npx agentdb@latest export ./.agentdb/reasoningbank.db ./backup.json
# Import experiences
npx agentdb@latest import ./experiences.json
# Get statistics
npx agentdb@latest stats ./.agentdb/reasoningbank.db
# Shows: total patterns, domains, confidence distribution
# Migrate from legacy ReasoningBank
npx agentdb@latest migrate --source .swarm/memory.db --target .agentdb/reasoningbank.db
# Validate migration
npx agentdb@latest stats .agentdb/reasoningbank.db
# Check source database exists
ls -la .swarm/memory.db
# Run with verbose logging
DEBUG=agentdb:* npx agentdb@latest migrate --source .swarm/memory.db
// Enable context synthesis for better quality
const result = await rb.retrieveWithReasoning(embedding, {
synthesizeContext: true,
useMMR: true,
k: 10,
});
// Enable automatic optimization
const result = await rb.retrieveWithReasoning(embedding, {
optimizeMemory: true, // Consolidates similar patterns
});
// Or manually optimize
await rb.optimize();
npx agentdb@latest mcpCategory: Machine Learning / Reinforcement Learning Difficulty: Intermediate Estimated Time: 20-30 minutes
Vector Semantic Retrieval Over Exact Matching: ReasoningBank with AgentDB leverages 150x faster vector search (100us vs 15ms) through semantic embeddings, retrieving similar trajectories even when keywords differ, enabling agents to learn from experiences described differently but contextually identical.
Adaptive Memory Consolidation: Memory distillation consolidates 100+ granular experiences (e.g., "fixed NPE in UserService", "added null check to AuthService") into higher-level patterns ("defensive null checks prevent pointer exceptions"), reducing memory footprint while preserving learned knowledge and avoiding pattern redundancy.
Confidence-Weighted Experience Replay: Verdict judgment retrieves patterns filtered by confidence (>0.8) and success rate, prioritizing proven trajectories over experimental ones, preventing agents from repeating failed approaches while still allowing exploration of medium-confidence strategies (0.5-0.8) when explicitly needed.
| Anti-Pattern | Why It Fails | Correct Approach |
|---|---|---|
| Storing raw text without embeddings | Pattern retrieval becomes keyword search, missing semantically similar experiences ("optimize query" vs "speed up database") | Always compute embeddings via computeEmbedding() before insertion, enabling semantic similarity matching |
| Skipping memory distillation | 10,000+ micro-experiences (every bug fix stored separately) bloat database to >2GB, slowing retrieval to >500ms | Run automatic consolidation (optimizeMemory: true) or manual distillation after 100+ experiences in same domain |
| Using trajectory outcomes without confidence scores | Agent treats single successful case (confidence 0.6) as proven pattern, repeating approaches that succeeded by luck | Only apply patterns with confidence >0.8 and usage_count >3, mark experimental patterns as "needs validation" |
ReasoningBank with AgentDB transforms agent learning from ephemeral task execution to persistent experience accumulation, enabling agents to judge new trajectories against historical patterns (verdict judgment), consolidate granular learnings into reusable strategies (memory distillation), and retrieve contextually relevant experiences through 150x faster vector search. This creates a flywheel effect - each task improves the pattern library, making future similar tasks faster and more accurate.
The key to production success is maintaining the 70% survival threshold for pattern updates: adversarial validation must challenge new learnings (e.g., "does this null check pattern apply to async contexts?") and only accept patterns that survive scrutiny. Without this rigor, confident drift accumulates - the agent becomes certain of incorrect patterns, degrading performance over time. When tracking learning delta, measure not just task completion rate, but pattern quality (success_rate / usage_count) - a high-quality ReasoningBank enables 10x faster task execution through proven trajectory reuse.
This skill should be used when the user asks to "create a hookify rule", "write a hook rule", "configure hookify", "add a hookify rule", or needs guidance on hookify rule syntax and patterns.
Create distinctive, production-grade frontend interfaces with high design quality. Use this skill when the user asks to build web components, pages, or applications. Generates creative, polished code that avoids generic AI aesthetics.