Comprehensive performance analysis suite for identifying bottlenecks, profiling swarm operations, generating detailed reports, and providing actionable optimization recommendations.
/plugin marketplace add DNYoussef/context-cascade/plugin install dnyoussef-context-cascade@DNYoussef/context-cascadeThis skill inherits all available tools. When active, it can use any tool Claude has access to.
_shared/README.md_shared/examples/cpu-profiling-example.py_shared/examples/latency-reduction-example.js_shared/examples/memory-optimization-example.py_shared/resources/benchmark-template.json_shared/resources/bottleneck-detector.js_shared/resources/memory-analyzer.sh_shared/resources/optimization-checklist.yaml_shared/resources/optimization-suggester.py_shared/resources/perf-config.yaml_shared/resources/profiler.py_shared/tests/test-bottleneck-detector.js_shared/tests/test-optimization-suggester.py_shared/tests/test-profiler.pyexamples/resource-utilization-example.shexamples/swarm-performance-example.jsexamples/workflow-optimization-example.pyresources/analysis-config.yamlresources/bottleneck-finder.jsresources/metrics-reporter.shComprehensive performance analysis suite for identifying bottlenecks, profiling swarm operations, generating detailed reports, and providing actionable optimization recommendations.
This skill consolidates all performance analysis capabilities:
npx claude-flow bottleneck detect
npx claude-flow analysis performance-report --format html --include-metrics
npx claude-flow bottleneck detect --fix --threshold 15
npx claude-flow bottleneck detect [options]
--swarm-id, -s <id> - Analyze specific swarm (default: current)--time-range, -t <range> - Analysis period: 1h, 24h, 7d, all (default: 1h)--threshold <percent> - Bottleneck threshold percentage (default: 20)--export, -e <file> - Export analysis to file--fix - Apply automatic optimizations# Basic detection for current swarm
npx claude-flow bottleneck detect
# Analyze specific swarm over 24 hours
npx claude-flow bottleneck detect --swarm-id swarm-123 -t 24h
# Export detailed analysis
npx claude-flow bottleneck detect -t 24h -e bottlenecks.json
# Auto-fix detected issues
npx claude-flow bottleneck detect --fix --threshold 15
# Low threshold for sensitive detection
npx claude-flow bottleneck detect --threshold 10 --export critical-issues.json
Communication Bottlenecks:
Processing Bottlenecks:
Memory Bottlenecks:
Network Bottlenecks:
š Bottleneck Analysis Report
āāāāāāāāāāāāāāāāāāāāāāāāāāā
š Summary
āāā Time Range: Last 1 hour
āāā Agents Analyzed: 6
āāā Tasks Processed: 42
āāā Critical Issues: 2
šØ Critical Bottlenecks
1. Agent Communication (35% impact)
āāā coordinator ā coder-1 messages delayed by 2.3s avg
2. Memory Access (28% impact)
āāā Neural pattern loading taking 1.8s per access
ā ļø Warning Bottlenecks
1. Task Queue (18% impact)
āāā 5 tasks waiting > 10s for assignment
š” Recommendations
1. Switch to hierarchical topology (est. 40% improvement)
2. Enable memory caching (est. 25% improvement)
3. Increase agent concurrency to 8 (est. 20% improvement)
ā
Quick Fixes Available
Run with --fix to apply:
- Enable smart caching
- Optimize message routing
- Adjust agent priorities
Automatic analysis during task execution:
Time Bottlenecks:
Coordination Bottlenecks:
Resource Bottlenecks:
// Check for bottlenecks in Claude Code
mcp__claude-flow__bottleneck_detect({
timeRange: "1h",
threshold: 20,
autoFix: false
})
// Get detailed task results with bottleneck analysis
mcp__claude-flow__task_results({
taskId: "task-123",
format: "detailed"
})
Result Format:
{
"bottlenecks": [
{
"type": "coordination",
"severity": "high",
"description": "Single agent used for complex task",
"recommendation": "Spawn specialized agents for parallel work",
"impact": "35%",
"affectedComponents": ["coordinator", "coder-1"]
}
],
"improvements": [
{
"area": "execution_time",
"suggestion": "Use parallel task execution",
"expectedImprovement": "30-50% time reduction",
"implementationSteps": [
"Split task into smaller units",
"Spawn 3-4 specialized agents",
"Use mesh topology for coordination"
]
}
],
"metrics": {
"avgExecutionTime": "142s",
"agentUtilization": "67%",
"cacheHitRate": "82%",
"parallelizationFactor": 1.2
}
}
npx claude-flow analysis performance-report [options]
--format <type> - Report format: json, html, markdown (default: markdown)--include-metrics - Include detailed metrics and charts--compare <id> - Compare with previous swarm--time-range <range> - Analysis period: 1h, 24h, 7d, 30d, all--output <file> - Output file path--sections <list> - Comma-separated sections to includeExecutive Summary
Swarm Overview
Performance Metrics
Bottleneck Analysis
Comparative Analysis (when --compare used)
Recommendations
# Generate HTML report with all metrics
npx claude-flow analysis performance-report --format html --include-metrics
# Compare current swarm with previous
npx claude-flow analysis performance-report --compare swarm-123 --format markdown
# Custom output with specific sections
npx claude-flow analysis performance-report \
--sections summary,metrics,recommendations \
--output reports/perf-analysis.html \
--format html
# Weekly performance report
npx claude-flow analysis performance-report \
--time-range 7d \
--include-metrics \
--format markdown \
--output docs/weekly-performance.md
# JSON format for CI/CD integration
npx claude-flow analysis performance-report \
--format json \
--output build/performance.json
# Performance Analysis Report
## Executive Summary
- **Overall Score**: 87/100
- **Analysis Period**: Last 24 hours
- **Swarms Analyzed**: 3
- **Critical Issues**: 1
## Key Metrics
| Metric | Value | Trend | Target |
|--------|-------|-------|--------|
| Avg Task Time | 42s | ā 12% | 35s |
| Agent Utilization | 78% | ā 5% | 85% |
| Cache Hit Rate | 91% | ā | 90% |
| Parallel Efficiency | 2.3x | ā 0.4x | 2.5x |
## Bottleneck Analysis
### Critical
1. **Agent Communication Delay** (Impact: 35%)
- Coordinator ā Coder messages delayed by 2.3s avg
- **Fix**: Switch to hierarchical topology
### Warnings
1. **Memory Access Pattern** (Impact: 18%)
- Neural pattern loading: 1.8s per access
- **Fix**: Enable memory caching
## Recommendations
1. **High Priority**: Switch to hierarchical topology (40% improvement)
2. **Medium Priority**: Enable memory caching (25% improvement)
3. **Low Priority**: Increase agent concurrency to 8 (20% improvement)
When using --fix, the following optimizations may be applied:
1. Topology Optimization
2. Caching Enhancement
3. Concurrency Tuning
4. Priority Adjustment
5. Resource Optimization
Typical improvements after bottleneck resolution:
# Monitor performance in real-time
npx claude-flow swarm monitor --interval 5
# Generate hourly reports
while true; do
npx claude-flow analysis performance-report \
--format json \
--output logs/perf-$(date +%Y%m%d-%H%M).json
sleep 3600
done
# .github/workflows/performance.yml
name: Performance Analysis
on: [push, pull_request]
jobs:
analyze:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Run Performance Analysis
run: |
npx claude-flow analysis performance-report \
--format json \
--output performance.json
- name: Check Performance Thresholds
run: |
npx claude-flow bottleneck detect \
--threshold 15 \
--export bottlenecks.json
- name: Upload Reports
uses: actions/upload-artifact@v2
with:
name: performance-reports
path: |
performance.json
bottlenecks.json
// scripts/analyze-performance.js
const { exec } = require('child_process');
const fs = require('fs');
async function analyzePerformance() {
// Run bottleneck detection
const bottlenecks = await runCommand(
'npx claude-flow bottleneck detect --format json'
);
// Generate performance report
const report = await runCommand(
'npx claude-flow analysis performance-report --format json'
);
// Analyze results
const analysis = {
bottlenecks: JSON.parse(bottlenecks),
performance: JSON.parse(report),
timestamp: new Date().toISOString()
};
// Save combined analysis
fs.writeFileSync(
'analysis/combined-report.json',
JSON.stringify(analysis, null, 2)
);
// Generate alerts if needed
if (analysis.bottlenecks.critical.length > 0) {
console.error('CRITICAL: Performance bottlenecks detected!');
process.exit(1);
}
}
function runCommand(cmd) {
return new Promise((resolve, reject) => {
exec(cmd, (error, stdout, stderr) => {
if (error) reject(error);
else resolve(stdout);
});
});
}
analyzePerformance().catch(console.error);
High Memory Usage
# Analyze memory bottlenecks
npx claude-flow bottleneck detect --threshold 10
# Check cache performance
npx claude-flow cache manage --action stats
# Review memory metrics
npx claude-flow memory usage
Slow Task Execution
# Identify slow tasks
npx claude-flow task status --detailed
# Analyze coordination overhead
npx claude-flow bottleneck detect --time-range 1h
# Check agent utilization
npx claude-flow agent metrics
Poor Cache Performance
# Analyze cache hit rates
npx claude-flow analysis performance-report --sections metrics
# Review cache strategy
npx claude-flow cache manage --action analyze
# Enable cache warming
npx claude-flow bottleneck detect --fix
npx claude-flow swarm monitor - Real-time monitoringnpx claude-flow token usage - Token optimization analysisnpx claude-flow cache manage - Cache optimizationnpx claude-flow agent metrics - Agent performance metricsnpx claude-flow task status - Task execution analysisVersion: 1.0.0 Last Updated: 2025-10-19 Maintainer: Claude Flow Team