Unified language specialists for Python and TypeScript development, providing expert guidance for modern backend APIs, type-safe development, async optimization, and framework integration (Django/Flask/FastAPI for Python, Express/Nest.js for TypeScript). Includes comprehensive resources, testing tools, and production-ready examples.
/plugin marketplace add DNYoussef/context-cascade/plugin install dnyoussef-context-cascade@DNYoussef/context-cascadeThis skill inherits all available tools. When active, it can use any tool Claude has access to.
examples/multi-language-repo/polyglot-microservices/readme.mdexamples/python-development/fastapi-postgresql-api/main.pyexamples/python-development/fastapi-postgresql-api/readme.mdexamples/typescript-project/nestjs-typeorm-api/readme.mdexamples/typescript-project/nestjs-typeorm-api/src/app.module.tsexamples/typescript-project/nestjs-typeorm-api/src/main.tsexamples/typescript-project/nestjs-typeorm-api/src/users/dto/create-user.dto.tsexamples/typescript-project/nestjs-typeorm-api/src/users/user.entity.tsexamples/typescript-project/nestjs-typeorm-api/src/users/users.controller.tsexamples/typescript-project/nestjs-typeorm-api/src/users/users.module.tsexamples/typescript-project/nestjs-typeorm-api/src/users/users.service.tsreadme.mdresources/scripts/code-formatter.shresources/scripts/language-analyzer.pyresources/scripts/python-linter.pyresources/scripts/typescript-validator.jsresources/templates/linting-rules.yamlresources/templates/python-config.yamlresources/templates/typescript-config.jsontests/test-multi-language-integration.shExpert multi-language development suite for Python and TypeScript backend systems with comprehensive tooling, testing, and examples.
This Gold tier skill provides unified access to Python and TypeScript specialists with production-ready resources, automated linting/validation scripts, configuration templates, comprehensive test suites, and real-world examples for multi-language repository development.
Activate this skill when:
This parent skill orchestrates two specialized sub-skills:
Python Specialist (python-specialist/)
TypeScript Specialist (typescript-specialist/)
language-specialists/
├── skill.md # This parent skill file
├── README.md # Quick start guide
├── python-specialist/ # Python-specific skill
│ └── skill.md
├── typescript-specialist/ # TypeScript-specific skill
│ └── skill.md
├── resources/ # Shared tooling and configs ⭐ NEW
│ ├── scripts/
│ │ ├── python-linter.py
│ │ ├── typescript-validator.js
│ │ ├── code-formatter.sh
│ │ └── language-analyzer.py
│ └── templates/
│ ├── python-config.yaml
│ ├── typescript-config.json
│ └── linting-rules.yaml
├── tests/ # Validation test suites ⭐ NEW
│ ├── test-python-specialist.py
│ ├── test-typescript-specialist.ts
│ └── test-multi-language-integration.sh
└── examples/ # Production examples ⭐ NEW
├── python-development/
│ └── fastapi-postgresql-api/ (150-200 lines)
├── typescript-project/
│ └── nestjs-typeorm-api/ (200-250 lines)
└── multi-language-repo/
└── polyglot-microservices/ (250-300 lines)
Step 1: Run Language Analyzer
Analyze existing codebase to determine language distribution and recommend tooling:
python C:\Users\17175\claude-code-plugins\ruv-sparc-three-loop-system\skills\language-specialists\resources\scripts\language-analyzer.py --path /path/to/project
Step 2: Apply Language-Specific Configs
Copy templates to project based on analysis:
# For Python projects
cp resources/templates/python-config.yaml project/pyproject.toml
# For TypeScript projects
cp resources/templates/typescript-config.json project/tsconfig.json
# For linting
cp resources/templates/linting-rules.yaml project/.linting-rules.yaml
Step 3: Setup Development Environment
# Python environment
python -m venv .venv
source .venv/bin/activate # Windows: .venv\Scripts\activate
pip install -r requirements.txt
# TypeScript environment
pnpm install
pnpm build
Step 1: Run Python Linter
python resources/scripts/python-linter.py --dir src/ --strict
Step 2: Run TypeScript Validator
node resources/scripts/typescript-validator.js --dir src/ --strict
Step 3: Format All Code
bash resources/scripts/code-formatter.sh --all
Step 1: Run Specialist Tests
# Test Python specialist
pytest tests/test-python-specialist.py -v
# Test TypeScript specialist
pnpm test tests/test-typescript-specialist.ts
# Integration tests
bash tests/test-multi-language-integration.sh
Step 2: Coverage Analysis
# Python coverage
pytest --cov=src --cov-report=html
# TypeScript coverage
pnpm test --coverage
resources/scripts/)python-linter.py (80-100 lines)
typescript-validator.js (90-110 lines)
code-formatter.sh (60-80 lines)
language-analyzer.py (100-120 lines)
resources/templates/)python-config.yaml
typescript-config.json
linting-rules.yaml
tests/)test-python-specialist.py (150-180 lines)
test-typescript-specialist.ts (160-190 lines)
test-multi-language-integration.sh (120-140 lines)
examples/python-development/)fastapi-postgresql-api/ (150-200 lines total)
Key Features:
examples/typescript-project/)nestjs-typeorm-api/ (200-250 lines total)
Key Features:
examples/multi-language-repo/)polyglot-microservices/ (250-300 lines total)
Key Features:
1. Language Selection Guidelines
Use Python for:
Use TypeScript for:
2. Code Organization
monorepo/
├── services/
│ ├── python-api/ # FastAPI service
│ └── typescript-api/ # Nest.js service
├── shared/
│ ├── types/ # Shared TypeScript types
│ └── schemas/ # Shared Pydantic models
├── tools/
│ ├── scripts/ # Language-specific tooling
│ └── configs/ # Shared configurations
└── tests/
├── python/
└── typescript/
3. Dependency Management
poetry or pip-tools for deterministic buildspnpm with workspace protocol for monorepos4. CI/CD Integration
# .github/workflows/multi-language.yml
jobs:
python-quality:
runs-on: ubuntu-latest
steps:
- uses: actions/setup-python@v4
- run: python resources/scripts/python-linter.py --strict
- run: pytest tests/test-python-specialist.py
typescript-quality:
runs-on: ubuntu-latest
steps:
- uses: actions/setup-node@v3
- run: node resources/scripts/typescript-validator.js --strict
- run: pnpm test tests/test-typescript-specialist.ts
integration:
needs: [python-quality, typescript-quality]
runs-on: ubuntu-latest
steps:
- run: bash tests/test-multi-language-integration.sh
Code Quality:
Resource Completeness:
resources/scripts/ (80-120 lines each)resources/templates/tests/ (120-190 lines each)examples/ (150-300 lines each)Documentation:
Specialized Agents:
python-specialist → Python development, async optimization, type hintstypescript-specialist → TypeScript development, type safety, build optimizationbackend-dev → General backend architecturetester → Test suite creation and validationcode-analyzer → Code quality analysis across languagesWorkflow:
# Pre-task: Initialize environment
npx claude-flow@alpha hooks pre-task --description "Multi-language project setup"
# During: Track changes across languages
npx claude-flow@alpha hooks post-edit --file "src/api.py" --memory-key "language-specialists/python-api"
npx claude-flow@alpha hooks post-edit --file "src/api.ts" --memory-key "language-specialists/typescript-api"
# Post-task: Run comprehensive validation
bash resources/scripts/code-formatter.sh --all
python resources/scripts/python-linter.py --strict
node resources/scripts/typescript-validator.js --strict
bash tests/test-multi-language-integration.sh
npx claude-flow@alpha hooks post-task --task-id "language-specialists-validation"
Pattern 1: Shared API Contracts
# Python (Pydantic)
from pydantic import BaseModel
class UserSchema(BaseModel):
id: int
email: str
username: str
// TypeScript (interface)
export interface User {
id: number;
email: string;
username: string;
}
Pattern 2: Error Handling Consistency
# Python
from fastapi import HTTPException
if not user:
raise HTTPException(status_code=404, detail="User not found")
// TypeScript
import { NotFoundException } from '@nestjs/common';
if (!user) {
throw new NotFoundException('User not found');
}
Issue: Import conflicts between Python and TypeScript in monorepo
Solution: Use separate node_modules/ and .venv/ directories, configure .gitignore properly
Issue: Type validation inconsistencies across languages Solution: Use shared schema definitions (e.g., JSON Schema) and generate types for both languages
Issue: Performance differences between Python/TypeScript for same workload Solution: Run language-analyzer.py to identify bottlenecks, consider moving CPU-bound tasks to Rust/Go
python-specialist: Deep Python expertisetypescript-specialist: Deep TypeScript expertisebackend-dev: Backend architecturedocker-containerization: Multi-service Docker setuptesting-quality: Advanced testing strategiesPython:
TypeScript:
Multi-Language:
mcp__flow-nexus__sandbox_create: Create isolated testing environmentsmcp__connascence-analyzer__analyze_workspace: Analyze code quality across languagesmcp__memory-mcp__memory_store: Store language-specific patterns and decisionsDevelopment Speed:
Code Quality:
Resource Quality:
Skill Version: 2.0.0 (Gold Tier) Last Updated: 2025-11-02 Maintained By: language-specialists coordination Tier: Gold (Parent + Nested Specialists + Resources + Tests + Examples)