Generate professional markdown and HTML reports from data with charts, tables, and analysis.
Generates professional markdown and HTML reports from data with charts, tables, and analysis. Use it when you need to create structured reports from CSV files, datasets, or performance metrics.
/plugin marketplace add CuriousLearner/devkit/plugin install devkit@devkit-marketplaceThis skill inherits all available tools. When active, it can use any tool Claude has access to.
Generate professional markdown and HTML reports from data with charts, tables, and analysis.
You are a report generation expert. When invoked:
Analyze Data:
Create Report Structure:
Generate Visualizations:
Format Output:
@report-generator data.csv
@report-generator --format html
@report-generator --template executive-summary
@report-generator --charts --pdf
@report-generator --compare baseline.json current.json
def generate_executive_summary(data, title="Executive Summary"):
"""
Generate high-level executive summary report
"""
from datetime import datetime
report = f"""# {title}
**Generated:** {datetime.now().strftime('%B %d, %Y at %I:%M %p')}
---
## Key Highlights
"""
# Calculate key metrics
metrics = calculate_key_metrics(data)
for metric in metrics:
icon = "✅" if metric['status'] == 'good' else "⚠️" if metric['status'] == 'warning' else "❌"
report += f"{icon} **{metric['name']}**: {metric['value']}\n"
report += f"""
---
## Performance Overview
| Metric | Current | Previous | Change |
|--------|---------|----------|--------|
"""
for metric in metrics:
if 'previous' in metric:
change = calculate_change(metric['current'], metric['previous'])
arrow = "↑" if change > 0 else "↓" if change < 0 else "→"
color = "green" if change > 0 else "red" if change < 0 else "gray"
report += f"| {metric['name']} | {metric['current']:,} | {metric['previous']:,} | {arrow} {abs(change):.1f}% |\n"
report += """
---
## Recommendations
"""
recommendations = generate_recommendations(metrics)
for i, rec in enumerate(recommendations, 1):
priority = rec.get('priority', 'medium')
emoji = "🔴" if priority == 'high' else "🟡" if priority == 'medium' else "🟢"
report += f"{i}. {emoji} **{rec['title']}**\n"
report += f" {rec['description']}\n\n"
return report
import pandas as pd
import numpy as np
from datetime import datetime
def generate_data_analysis_report(df, title="Data Analysis Report"):
"""
Generate comprehensive data analysis report
"""
report = f"""# {title}
**Date:** {datetime.now().strftime('%Y-%m-%d')}
**Dataset:** {len(df):,} rows × {len(df.columns)} columns
---
## Table of Contents
1. [Dataset Overview](#dataset-overview)
2. [Data Quality](#data-quality)
3. [Statistical Summary](#statistical-summary)
4. [Distributions](#distributions)
5. [Correlations](#correlations)
6. [Insights](#insights)
---
## Dataset Overview
### Basic Information
- **Total Rows:** {len(df):,}
- **Total Columns:** {len(df.columns)}
- **Memory Usage:** {df.memory_usage(deep=True).sum() / 1024**2:.2f} MB
- **Duplicate Rows:** {df.duplicated().sum():,}
### Column Information
| Column | Type | Non-Null | Unique | Sample Values |
|--------|------|----------|--------|---------------|
"""
for col in df.columns:
dtype = str(df[col].dtype)
non_null = df[col].count()
unique = df[col].nunique()
samples = df[col].dropna().head(3).tolist()
sample_str = ", ".join(str(s) for s in samples)
report += f"| {col} | {dtype} | {non_null:,} | {unique:,} | {sample_str} |\n"
report += """
---
## Data Quality
### Missing Values
"""
missing = df.isnull().sum()
if missing.sum() > 0:
report += "| Column | Missing Count | Missing % |\n"
report += "|--------|---------------|----------|\n"
for col in missing[missing > 0].index:
count = missing[col]
pct = (count / len(df)) * 100
report += f"| {col} | {count:,} | {pct:.1f}% |\n"
else:
report += "✅ No missing values detected.\n"
report += "\n### Data Type Issues\n\n"
# Check for potential type issues
type_issues = []
for col in df.select_dtypes(include=['object']):
# Check if column should be numeric
try:
pd.to_numeric(df[col], errors='raise')
type_issues.append(f"- `{col}` appears to be numeric but stored as string")
except:
pass
# Check if column should be datetime
try:
pd.to_datetime(df[col], errors='raise')
if df[col].str.contains(r'\d{4}-\d{2}-\d{2}').any():
type_issues.append(f"- `{col}` appears to be datetime but stored as string")
except:
pass
if type_issues:
report += "\n".join(type_issues) + "\n"
else:
report += "✅ No data type issues detected.\n"
report += """
---
## Statistical Summary
### Numeric Columns
"""
# Add statistics for numeric columns
numeric_cols = df.select_dtypes(include=[np.number]).columns
if len(numeric_cols) > 0:
stats = df[numeric_cols].describe()
report += stats.to_markdown() + "\n"
# Add additional statistics
report += "\n### Additional Statistics\n\n"
report += "| Column | Median | Mode | Std Dev | Variance |\n"
report += "|--------|--------|------|---------|----------|\n"
for col in numeric_cols:
median = df[col].median()
mode = df[col].mode().iloc[0] if not df[col].mode().empty else "N/A"
std = df[col].std()
var = df[col].var()
report += f"| {col} | {median:.2f} | {mode} | {std:.2f} | {var:.2f} |\n"
report += """
### Categorical Columns
"""
categorical_cols = df.select_dtypes(include=['object']).columns
if len(categorical_cols) > 0:
for col in categorical_cols[:5]: # Limit to first 5
report += f"\n#### {col}\n\n"
value_counts = df[col].value_counts().head(10)
report += "| Value | Count | Percentage |\n"
report += "|-------|-------|------------|\n"
for value, count in value_counts.items():
pct = (count / len(df)) * 100
report += f"| {value} | {count:,} | {pct:.1f}% |\n"
report += """
---
## Distributions
"""
# Analyze distributions of numeric columns
for col in numeric_cols[:5]: # Limit to first 5
report += f"\n### {col} Distribution\n\n"
q1 = df[col].quantile(0.25)
q2 = df[col].quantile(0.50)
q3 = df[col].quantile(0.75)
iqr = q3 - q1
# Detect outliers
lower_bound = q1 - 1.5 * iqr
upper_bound = q3 + 1.5 * iqr
outliers = df[(df[col] < lower_bound) | (df[col] > upper_bound)]
report += f"""
**Quartiles:**
- Q1 (25%): {q1:.2f}
- Q2 (50%, Median): {q2:.2f}
- Q3 (75%): {q3:.2f}
- IQR: {iqr:.2f}
**Outliers:** {len(outliers)} ({len(outliers)/len(df)*100:.1f}%)
- Lower bound: {lower_bound:.2f}
- Upper bound: {upper_bound:.2f}
"""
report += """
---
## Correlations
"""
if len(numeric_cols) > 1:
corr_matrix = df[numeric_cols].corr()
report += "\n### Correlation Matrix\n\n"
report += corr_matrix.to_markdown() + "\n"
# Find strong correlations
report += "\n### Strong Correlations (|r| > 0.7)\n\n"
strong_corr = []
for i in range(len(corr_matrix.columns)):
for j in range(i+1, len(corr_matrix.columns)):
corr_val = corr_matrix.iloc[i, j]
if abs(corr_val) > 0.7:
col1 = corr_matrix.columns[i]
col2 = corr_matrix.columns[j]
strong_corr.append((col1, col2, corr_val))
if strong_corr:
for col1, col2, corr_val in strong_corr:
direction = "positive" if corr_val > 0 else "negative"
report += f"- **{col1}** ↔ **{col2}**: {corr_val:.3f} ({direction})\n"
else:
report += "No strong correlations found.\n"
report += """
---
## Insights
"""
# Generate insights
insights = generate_insights(df)
for insight in insights:
report += f"### {insight['title']}\n\n"
report += f"{insight['description']}\n\n"
if 'details' in insight:
for detail in insight['details']:
report += f"- {detail}\n"
report += "\n"
return report
def generate_insights(df):
"""Generate data insights"""
insights = []
# Insight: Completeness
missing_pct = (df.isnull().sum().sum() / (len(df) * len(df.columns))) * 100
if missing_pct < 1:
status = "excellent"
emoji = "✅"
elif missing_pct < 5:
status = "good"
emoji = "👍"
else:
status = "needs attention"
emoji = "⚠️"
insights.append({
"title": f"{emoji} Data Completeness: {status.title()}",
"description": f"Overall data completeness is {100-missing_pct:.1f}% with {missing_pct:.1f}% missing values.",
"details": [
f"Total cells: {len(df) * len(df.columns):,}",
f"Missing cells: {df.isnull().sum().sum():,}"
]
})
# Insight: Duplicates
dup_count = df.duplicated().sum()
if dup_count > 0:
insights.append({
"title": f"⚠️ Duplicate Records Found",
"description": f"Found {dup_count:,} duplicate rows ({dup_count/len(df)*100:.1f}% of dataset)",
"details": [
"Consider removing duplicates for accurate analysis",
"Review business logic for duplicate handling"
]
})
return insights
def generate_performance_report(metrics, baseline=None):
"""
Generate performance comparison report
"""
report = f"""# Performance Report
**Generated:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
---
## Summary
"""
if baseline:
report += "### Comparison with Baseline\n\n"
report += "| Metric | Current | Baseline | Change | Status |\n"
report += "|--------|---------|----------|--------|--------|\n"
for metric_name, current_value in metrics.items():
if metric_name in baseline:
baseline_value = baseline[metric_name]
change = ((current_value - baseline_value) / baseline_value) * 100
if abs(change) < 5:
status = "🟢 Stable"
elif change > 0:
status = "🟢 Improved" if is_improvement(metric_name, change) else "🔴 Degraded"
else:
status = "🔴 Degraded" if is_improvement(metric_name, change) else "🟢 Improved"
report += f"| {metric_name} | {current_value:.2f} | {baseline_value:.2f} | {change:+.1f}% | {status} |\n"
else:
report += "### Current Metrics\n\n"
report += "| Metric | Value | Status |\n"
report += "|--------|-------|--------|\n"
for metric_name, value in metrics.items():
threshold = get_threshold(metric_name)
status = evaluate_metric(value, threshold)
report += f"| {metric_name} | {value:.2f} | {status} |\n"
report += """
---
## Detailed Analysis
"""
for metric_name, value in metrics.items():
report += f"### {metric_name}\n\n"
if baseline and metric_name in baseline:
baseline_value = baseline[metric_name]
change = ((value - baseline_value) / baseline_value) * 100
report += f"- **Current:** {value:.2f}\n"
report += f"- **Baseline:** {baseline_value:.2f}\n"
report += f"- **Change:** {change:+.1f}%\n\n"
if abs(change) > 10:
report += f"⚠️ Significant change detected. "
report += "Review recent changes that may have impacted this metric.\n\n"
else:
report += f"- **Value:** {value:.2f}\n\n"
return report
def is_improvement(metric_name, change):
"""Determine if change is improvement based on metric type"""
# Lower is better for these metrics
lower_is_better = ['response_time', 'error_rate', 'latency', 'load_time']
for pattern in lower_is_better:
if pattern in metric_name.lower():
return change < 0
return change > 0
def generate_html_report(data, title="Report", template="default"):
"""
Generate styled HTML report
"""
# CSS styles
css = """
<style>
body {
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, sans-serif;
line-height: 1.6;
color: #333;
max-width: 1200px;
margin: 0 auto;
padding: 20px;
background: #f5f5f5;
}
.report-container {
background: white;
padding: 40px;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
h1 {
color: #2c3e50;
border-bottom: 3px solid #3498db;
padding-bottom: 10px;
}
h2 {
color: #34495e;
margin-top: 30px;
border-left: 4px solid #3498db;
padding-left: 10px;
}
h3 {
color: #7f8c8d;
}
table {
width: 100%;
border-collapse: collapse;
margin: 20px 0;
}
th {
background: #3498db;
color: white;
padding: 12px;
text-align: left;
font-weight: 600;
}
td {
padding: 10px 12px;
border-bottom: 1px solid #ecf0f1;
}
tr:hover {
background: #f8f9fa;
}
.metric-card {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 20px;
border-radius: 8px;
margin: 10px 0;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
}
.metric-value {
font-size: 2em;
font-weight: bold;
}
.metric-label {
font-size: 0.9em;
opacity: 0.9;
}
.badge {
display: inline-block;
padding: 4px 12px;
border-radius: 12px;
font-size: 0.85em;
font-weight: 600;
}
.badge-success {
background: #2ecc71;
color: white;
}
.badge-warning {
background: #f39c12;
color: white;
}
.badge-danger {
background: #e74c3c;
color: white;
}
.chart-container {
margin: 30px 0;
padding: 20px;
background: #f8f9fa;
border-radius: 8px;
}
code {
background: #f4f4f4;
padding: 2px 6px;
border-radius: 3px;
font-family: 'Courier New', monospace;
}
pre {
background: #2c3e50;
color: #ecf0f1;
padding: 15px;
border-radius: 5px;
overflow-x: auto;
}
.timestamp {
color: #7f8c8d;
font-size: 0.9em;
}
</style>
"""
# Generate HTML content
html = f"""
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>{title}</title>
{css}
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
</head>
<body>
<div class="report-container">
<h1>{title}</h1>
<p class="timestamp">Generated: {datetime.now().strftime('%B %d, %Y at %I:%M %p')}</p>
{generate_html_content(data)}
</div>
</body>
</html>
"""
return html
def generate_html_content(data):
"""Generate HTML content from data"""
html = ""
# Key metrics section
if 'metrics' in data:
html += "<h2>Key Metrics</h2>"
html += '<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 15px;">'
for metric in data['metrics']:
html += f"""
<div class="metric-card">
<div class="metric-label">{metric['name']}</div>
<div class="metric-value">{metric['value']}</div>
</div>
"""
html += "</div>"
# Table data
if 'table' in data:
html += "<h2>Data Table</h2>"
html += generate_html_table(data['table'])
# Charts
if 'charts' in data:
for chart in data['charts']:
html += f'<h2>{chart["title"]}</h2>'
html += '<div class="chart-container">'
html += generate_chart_html(chart)
html += '</div>'
return html
def generate_html_table(table_data):
"""Generate HTML table from data"""
html = "<table>"
# Header
if 'headers' in table_data:
html += "<thead><tr>"
for header in table_data['headers']:
html += f"<th>{header}</th>"
html += "</tr></thead>"
# Rows
html += "<tbody>"
for row in table_data.get('rows', []):
html += "<tr>"
for cell in row:
html += f"<td>{cell}</td>"
html += "</tr>"
html += "</tbody>"
html += "</table>"
return html
def generate_chart_html(chart_data):
"""Generate Chart.js chart"""
chart_id = f"chart_{abs(hash(chart_data['title']))}"
html = f'<canvas id="{chart_id}" width="400" height="200"></canvas>'
html += f"""
<script>
var ctx = document.getElementById('{chart_id}').getContext('2d');
var chart = new Chart(ctx, {{
type: '{chart_data.get('type', 'bar')}',
data: {{
labels: {chart_data['labels']},
datasets: [{{
label: '{chart_data['title']}',
data: {chart_data['data']},
backgroundColor: 'rgba(54, 162, 235, 0.5)',
borderColor: 'rgba(54, 162, 235, 1)',
borderWidth: 2
}}]
}},
options: {{
responsive: true,
maintainAspectRatio: true,
scales: {{
y: {{
beginAtZero: true
}}
}}
}}
}});
</script>
"""
return html
def generate_markdown_table(data, headers=None, alignment=None):
"""
Generate markdown table from data
alignment: list of 'left', 'center', 'right'
"""
if not data:
return ""
# Auto-detect headers if not provided
if headers is None:
if isinstance(data[0], dict):
headers = list(data[0].keys())
else:
headers = [f"Column {i+1}" for i in range(len(data[0]))]
# Generate header row
table = "| " + " | ".join(str(h) for h in headers) + " |\n"
# Generate alignment row
if alignment is None:
alignment = ['left'] * len(headers)
align_chars = {
'left': ':--',
'center': ':-:',
'right': '--:'
}
table += "| " + " | ".join(align_chars.get(a, ':--') for a in alignment) + " |\n"
# Generate data rows
for row in data:
if isinstance(row, dict):
row_data = [str(row.get(h, '')) for h in headers]
else:
row_data = [str(cell) for cell in row]
table += "| " + " | ".join(row_data) + " |\n"
return table
# Example usage
data = [
{"name": "John", "age": 30, "city": "New York"},
{"name": "Jane", "age": 25, "city": "San Francisco"},
{"name": "Bob", "age": 35, "city": "Chicago"}
]
table = generate_markdown_table(
data,
headers=['Name', 'Age', 'City'],
alignment=['left', 'right', 'left']
)
import matplotlib.pyplot as plt
import seaborn as sns
def generate_chart(data, chart_type='bar', title='Chart', output='chart.png'):
"""
Generate chart from data
"""
plt.figure(figsize=(10, 6))
plt.style.use('seaborn-v0_8-darkgrid')
if chart_type == 'bar':
plt.bar(data['labels'], data['values'])
elif chart_type == 'line':
plt.plot(data['labels'], data['values'], marker='o', linewidth=2)
elif chart_type == 'pie':
plt.pie(data['values'], labels=data['labels'], autopct='%1.1f%%')
elif chart_type == 'scatter':
plt.scatter(data['x'], data['y'], alpha=0.6)
plt.title(title, fontsize=16, fontweight='bold')
plt.tight_layout()
plt.savefig(output, dpi=300, bbox_inches='tight')
plt.close()
return output
# For markdown reports
def embed_chart_in_markdown(chart_path, alt_text="Chart"):
"""Generate markdown image embed"""
return f"\n"
from markdown import markdown
from weasyprint import HTML
def markdown_to_pdf(markdown_text, output_path='report.pdf', css=None):
"""
Convert markdown to PDF
"""
# Convert markdown to HTML
html_content = markdown(markdown_text, extensions=['tables', 'fenced_code'])
# Wrap in HTML document
html_doc = f"""
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<style>
{css if css else get_default_pdf_css()}
</style>
</head>
<body>
{html_content}
</body>
</html>
"""
# Convert to PDF
HTML(string=html_doc).write_pdf(output_path)
def get_default_pdf_css():
"""Default CSS for PDF export"""
return """
body {
font-family: Arial, sans-serif;
line-height: 1.6;
color: #333;
max-width: 800px;
margin: 0 auto;
padding: 20px;
}
h1 {
color: #2c3e50;
border-bottom: 2px solid #3498db;
padding-bottom: 10px;
}
table {
width: 100%;
border-collapse: collapse;
margin: 20px 0;
}
th, td {
border: 1px solid #ddd;
padding: 8px;
text-align: left;
}
th {
background-color: #3498db;
color: white;
}
code {
background: #f4f4f4;
padding: 2px 4px;
border-radius: 3px;
}
pre {
background: #f4f4f4;
padding: 10px;
border-radius: 5px;
overflow-x: auto;
}
"""
TEMPLATES = {
'executive': {
'sections': ['summary', 'key_metrics', 'recommendations'],
'style': 'concise'
},
'technical': {
'sections': ['overview', 'detailed_analysis', 'code_examples', 'metrics'],
'style': 'comprehensive'
},
'comparison': {
'sections': ['baseline', 'current', 'differences', 'trends'],
'style': 'comparative'
}
}
def generate_from_template(data, template_name='executive'):
"""Generate report from template"""
template = TEMPLATES.get(template_name, TEMPLATES['executive'])
report = f"# {template_name.title()} Report\n\n"
for section in template['sections']:
report += generate_section(data, section, template['style'])
return report
This skill should be used when the user asks to "create a slash command", "add a command", "write a custom command", "define command arguments", "use command frontmatter", "organize commands", "create command with file references", "interactive command", "use AskUserQuestion in command", or needs guidance on slash command structure, YAML frontmatter fields, dynamic arguments, bash execution in commands, user interaction patterns, or command development best practices for Claude Code.
This skill should be used when the user asks to "create an agent", "add an agent", "write a subagent", "agent frontmatter", "when to use description", "agent examples", "agent tools", "agent colors", "autonomous agent", or needs guidance on agent structure, system prompts, triggering conditions, or agent development best practices for Claude Code plugins.
This skill should be used when the user asks to "create a hook", "add a PreToolUse/PostToolUse/Stop hook", "validate tool use", "implement prompt-based hooks", "use ${CLAUDE_PLUGIN_ROOT}", "set up event-driven automation", "block dangerous commands", or mentions hook events (PreToolUse, PostToolUse, Stop, SubagentStop, SessionStart, SessionEnd, UserPromptSubmit, PreCompact, Notification). Provides comprehensive guidance for creating and implementing Claude Code plugin hooks with focus on advanced prompt-based hooks API.