Transform, manipulate, and analyze JSON data structures with advanced operations.
Transform, manipulate, and analyze JSON data structures with advanced operations like flattening, merging, querying with JSONPath/JMESPath, and format conversion. Use when you need to reshape nested data, extract specific fields, validate schemas, or convert between JSON, CSV, YAML, and XML formats.
/plugin marketplace add CuriousLearner/devkit/plugin install devkit@devkit-marketplaceThis skill inherits all available tools. When active, it can use any tool Claude has access to.
Transform, manipulate, and analyze JSON data structures with advanced operations.
You are a JSON transformation expert. When invoked:
Parse and Validate JSON:
Transform Data Structures:
Advanced Operations:
Data Manipulation:
@json-transformer data.json
@json-transformer --flatten
@json-transformer --path "users[*].email"
@json-transformer --merge file1.json file2.json
@json-transformer --to-csv data.json
@json-transformer --validate schema.json
import json
# Parse JSON string
data = json.loads('{"name": "John", "age": 30}')
# Parse from file
with open('data.json', 'r') as f:
data = json.load(f)
# Write JSON to file
with open('output.json', 'w') as f:
json.dump(data, f, indent=2)
# Pretty print
print(json.dumps(data, indent=2, sort_keys=True))
# Compact output
compact = json.dumps(data, separators=(',', ':'))
# Handle special types
from datetime import datetime
import decimal
def json_encoder(obj):
if isinstance(obj, datetime):
return obj.isoformat()
if isinstance(obj, decimal.Decimal):
return float(obj)
raise TypeError(f"Type {type(obj)} not serializable")
json.dumps(data, default=json_encoder)
// Parse JSON string
const data = JSON.parse('{"name": "John", "age": 30}');
// Parse from file (Node.js)
const fs = require('fs');
const data = JSON.parse(fs.readFileSync('data.json', 'utf8'));
// Write JSON to file
fs.writeFileSync('output.json', JSON.stringify(data, null, 2));
// Pretty print
console.log(JSON.stringify(data, null, 2));
// Custom serialization
const json = JSON.stringify(data, (key, value) => {
if (value instanceof Date) {
return value.toISOString();
}
return value;
}, 2);
# Pretty print
cat data.json | jq '.'
# Compact output
cat data.json | jq -c '.'
# Sort keys
cat data.json | jq -S '.'
# Read from file, write to file
jq '.' input.json > output.json
from jsonschema import validate, ValidationError
# Define schema
schema = {
"type": "object",
"properties": {
"name": {"type": "string"},
"age": {"type": "number", "minimum": 0},
"email": {"type": "string", "format": "email"}
},
"required": ["name", "email"]
}
# Validate data
data = {"name": "John", "email": "john@example.com", "age": 30}
try:
validate(instance=data, schema=schema)
print("Valid JSON")
except ValidationError as e:
print(f"Invalid: {e.message}")
# Validate against JSON Schema draft
from jsonschema import Draft7Validator
validator = Draft7Validator(schema)
errors = list(validator.iter_errors(data))
for error in errors:
print(f"Error at {'.'.join(str(p) for p in error.path)}: {error.message}")
const Ajv = require('ajv');
const ajv = new Ajv();
const schema = {
type: 'object',
properties: {
name: { type: 'string' },
age: { type: 'number', minimum: 0 },
email: { type: 'string', format: 'email' }
},
required: ['name', 'email']
};
const validate = ajv.compile(schema);
const data = { name: 'John', email: 'john@example.com', age: 30 };
if (validate(data)) {
console.log('Valid JSON');
} else {
console.log('Invalid:', validate.errors);
}
from jsonpath_ng import jsonpath, parse
data = {
"users": [
{"name": "John", "age": 30, "email": "john@example.com"},
{"name": "Jane", "age": 25, "email": "jane@example.com"}
]
}
# Extract all user names
jsonpath_expr = parse('users[*].name')
names = [match.value for match in jsonpath_expr.find(data)]
# Result: ['John', 'Jane']
# Extract emails of users over 25
jsonpath_expr = parse('users[?(@.age > 25)].email')
emails = [match.value for match in jsonpath_expr.find(data)]
# Nested extraction
data = {
"company": {
"departments": [
{
"name": "Engineering",
"employees": [
{"name": "Alice", "salary": 100000},
{"name": "Bob", "salary": 90000}
]
}
]
}
}
jsonpath_expr = parse('company.departments[*].employees[*].name')
names = [match.value for match in jsonpath_expr.find(data)]
# Extract field
echo '{"name": "John", "age": 30}' | jq '.name'
# Extract from array
echo '[{"name": "John"}, {"name": "Jane"}]' | jq '.[].name'
# Filter array
echo '[{"name": "John", "age": 30}, {"name": "Jane", "age": 25}]' | \
jq '.[] | select(.age > 25)'
# Extract nested fields
cat data.json | jq '.users[].email'
# Multiple fields
cat data.json | jq '.users[] | {name: .name, email: .email}'
# Conditional extraction
cat data.json | jq '.users[] | select(.age > 25) | .email'
import jmespath
data = {
"users": [
{"name": "John", "age": 30, "tags": ["admin", "developer"]},
{"name": "Jane", "age": 25, "tags": ["developer"]},
{"name": "Bob", "age": 35, "tags": ["manager"]}
]
}
# Simple extraction
names = jmespath.search('users[*].name', data)
# Result: ['John', 'Jane', 'Bob']
# Filtering
admins = jmespath.search('users[?contains(tags, `admin`)]', data)
# Multiple conditions
senior_devs = jmespath.search(
'users[?age > `28` && contains(tags, `developer`)]',
data
)
# Projections
result = jmespath.search('users[*].{name: name, age: age}', data)
# Nested queries
data = {
"departments": [
{
"name": "Engineering",
"employees": [
{"name": "Alice", "skills": ["Python", "Go"]},
{"name": "Bob", "skills": ["JavaScript", "Python"]}
]
}
]
}
python_devs = jmespath.search(
'departments[*].employees[?contains(skills, `Python`)].name',
data
)
def flatten_json(nested_json, parent_key='', sep='.'):
"""
Flatten nested JSON structure
"""
items = []
for key, value in nested_json.items():
new_key = f"{parent_key}{sep}{key}" if parent_key else key
if isinstance(value, dict):
items.extend(flatten_json(value, new_key, sep=sep).items())
elif isinstance(value, list):
for i, item in enumerate(value):
if isinstance(item, dict):
items.extend(flatten_json(item, f"{new_key}[{i}]", sep=sep).items())
else:
items.append((f"{new_key}[{i}]", item))
else:
items.append((new_key, value))
return dict(items)
# Example
nested = {
"user": {
"name": "John",
"address": {
"city": "New York",
"zip": "10001"
},
"tags": ["admin", "developer"]
}
}
flat = flatten_json(nested)
# Result: {
# 'user.name': 'John',
# 'user.address.city': 'New York',
# 'user.address.zip': '10001',
# 'user.tags[0]': 'admin',
# 'user.tags[1]': 'developer'
# }
function flattenJSON(obj, prefix = '', result = {}) {
for (const [key, value] of Object.entries(obj)) {
const newKey = prefix ? `${prefix}.${key}` : key;
if (value && typeof value === 'object' && !Array.isArray(value)) {
flattenJSON(value, newKey, result);
} else if (Array.isArray(value)) {
value.forEach((item, index) => {
if (typeof item === 'object') {
flattenJSON(item, `${newKey}[${index}]`, result);
} else {
result[`${newKey}[${index}]`] = item;
}
});
} else {
result[newKey] = value;
}
}
return result;
}
def unflatten_json(flat_json, sep='.'):
"""
Unflatten a flattened JSON structure
"""
result = {}
for key, value in flat_json.items():
parts = key.split(sep)
current = result
for i, part in enumerate(parts[:-1]):
# Handle array notation
if '[' in part:
array_key, index = part.split('[')
index = int(index.rstrip(']'))
if array_key not in current:
current[array_key] = []
# Extend array if needed
while len(current[array_key]) <= index:
current[array_key].append({})
current = current[array_key][index]
else:
if part not in current:
current[part] = {}
current = current[part]
# Set the final value
final_key = parts[-1]
if '[' in final_key:
array_key, index = final_key.split('[')
index = int(index.rstrip(']'))
if array_key not in current:
current[array_key] = []
while len(current[array_key]) <= index:
current[array_key].append(None)
current[array_key][index] = value
else:
current[final_key] = value
return result
def deep_merge(dict1, dict2):
"""
Deep merge two dictionaries
"""
result = dict1.copy()
for key, value in dict2.items():
if key in result and isinstance(result[key], dict) and isinstance(value, dict):
result[key] = deep_merge(result[key], value)
else:
result[key] = value
return result
# Example
base = {
"user": {"name": "John", "age": 30},
"settings": {"theme": "dark"}
}
override = {
"user": {"age": 31, "email": "john@example.com"},
"settings": {"language": "en"}
}
merged = deep_merge(base, override)
# Result: {
# 'user': {'name': 'John', 'age': 31, 'email': 'john@example.com'},
# 'settings': {'theme': 'dark', 'language': 'en'}
# }
# Merge two JSON files
jq -s '.[0] * .[1]' file1.json file2.json
# Deep merge
jq -s 'reduce .[] as $item ({}; . * $item)' file1.json file2.json
def transform_keys(obj, transform_fn):
"""
Transform all keys in JSON structure
"""
if isinstance(obj, dict):
return {transform_fn(k): transform_keys(v, transform_fn) for k, v in obj.items()}
elif isinstance(obj, list):
return [transform_keys(item, transform_fn) for item in obj]
else:
return obj
# Convert to snake_case
import re
def to_snake_case(text):
s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', text)
return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()
data = {
"firstName": "John",
"lastName": "Doe",
"userInfo": {
"emailAddress": "john@example.com"
}
}
snake_case_data = transform_keys(data, to_snake_case)
# Result: {
# 'first_name': 'John',
# 'last_name': 'Doe',
# 'user_info': {'email_address': 'john@example.com'}
# }
# Convert to camelCase
def to_camel_case(text):
components = text.split('_')
return components[0] + ''.join(x.title() for x in components[1:])
import json
import csv
import pandas as pd
# Using pandas (recommended)
data = [
{"name": "John", "age": 30, "email": "john@example.com"},
{"name": "Jane", "age": 25, "email": "jane@example.com"}
]
df = pd.DataFrame(data)
df.to_csv('output.csv', index=False)
# Using csv module
with open('output.csv', 'w', newline='') as csvfile:
if data:
writer = csv.DictWriter(csvfile, fieldnames=data[0].keys())
writer.writeheader()
writer.writerows(data)
# Handle nested JSON
def flatten_for_csv(data):
"""Flatten nested JSON for CSV export"""
if isinstance(data, list):
return [flatten_json(item) for item in data]
return flatten_json(data)
flattened = flatten_for_csv(data)
pd.DataFrame(flattened).to_csv('output.csv', index=False)
# Convert JSON array to CSV
cat data.json | jq -r '.[] | [.name, .age, .email] | @csv'
# With headers
cat data.json | jq -r '["name", "age", "email"], (.[] | [.name, .age, .email]) | @csv'
import json
import yaml
# JSON to YAML
with open('data.json', 'r') as json_file:
data = json.load(json_file)
with open('data.yaml', 'w') as yaml_file:
yaml.dump(data, yaml_file, default_flow_style=False)
# YAML to JSON
with open('data.yaml', 'r') as yaml_file:
data = yaml.safe_load(yaml_file)
with open('data.json', 'w') as json_file:
json.dump(data, json_file, indent=2)
import json
import xml.etree.ElementTree as ET
def json_to_xml(json_obj, root_name='root'):
"""Convert JSON to XML"""
def build_xml(parent, obj):
if isinstance(obj, dict):
for key, val in obj.items():
elem = ET.SubElement(parent, key)
build_xml(elem, val)
elif isinstance(obj, list):
for item in obj:
elem = ET.SubElement(parent, 'item')
build_xml(elem, item)
else:
parent.text = str(obj)
root = ET.Element(root_name)
build_xml(root, json_obj)
return ET.tostring(root, encoding='unicode')
# Example
data = {"user": {"name": "John", "age": 30}}
xml_string = json_to_xml(data)
import pyjq
data = {
"users": [
{"name": "John", "age": 30, "city": "New York"},
{"name": "Jane", "age": 25, "city": "San Francisco"},
{"name": "Bob", "age": 35, "city": "New York"}
]
}
# Select and transform
result = pyjq.all('.users[] | {name, age}', data)
# Filter and group
result = pyjq.all('group_by(.city) | map({city: .[0].city, count: length})', data)
# Complex transformation
result = pyjq.all('''
.users
| map(select(.age > 25))
| sort_by(.age)
| reverse
''', data)
# Map over array
echo '[1,2,3,4,5]' | jq 'map(. * 2)'
# Filter and transform
cat users.json | jq '.users | map(select(.age > 25) | {name, email})'
# Group by field
cat data.json | jq 'group_by(.category) | map({category: .[0].category, count: length})'
# Calculate sum
cat orders.json | jq '[.[] | .amount] | add'
# Create new structure
cat users.json | jq '{
total: length,
users: [.[] | {name, email}],
avgAge: ([.[] | .age] | add / length)
}'
# Conditional logic
cat data.json | jq '.[] | if .status == "active" then .name else empty end'
def restructure_json(data):
"""
Example: Transform flat user records into hierarchical structure
"""
# Input: [
# {"userId": 1, "name": "John", "orderId": 101, "product": "A"},
# {"userId": 1, "name": "John", "orderId": 102, "product": "B"},
# {"userId": 2, "name": "Jane", "orderId": 103, "product": "C"}
# ]
# Output: [
# {
# "userId": 1,
# "name": "John",
# "orders": [
# {"orderId": 101, "product": "A"},
# {"orderId": 102, "product": "B"}
# ]
# },
# {
# "userId": 2,
# "name": "Jane",
# "orders": [{"orderId": 103, "product": "C"}]
# }
# ]
from collections import defaultdict
users = defaultdict(lambda: {"orders": []})
for record in data:
user_id = record["userId"]
if "name" not in users[user_id]:
users[user_id]["userId"] = user_id
users[user_id]["name"] = record["name"]
users[user_id]["orders"].append({
"orderId": record["orderId"],
"product": record["product"]
})
return list(users.values())
import json
def unique_by_key(array, key):
"""Remove duplicates based on key"""
seen = set()
result = []
for item in array:
value = item.get(key)
if value not in seen:
seen.add(value)
result.append(item)
return result
def sort_by_key(array, key, reverse=False):
"""Sort array by key"""
return sorted(array, key=lambda x: x.get(key, ''), reverse=reverse)
def group_by_key(array, key):
"""Group array elements by key"""
from collections import defaultdict
groups = defaultdict(list)
for item in array:
groups[item.get(key)].append(item)
return dict(groups)
# Example usage
users = [
{"name": "John", "age": 30, "city": "New York"},
{"name": "Jane", "age": 25, "city": "San Francisco"},
{"name": "Bob", "age": 35, "city": "New York"},
{"name": "Alice", "age": 28, "city": "San Francisco"}
]
# Sort by age
sorted_users = sort_by_key(users, 'age')
# Group by city
by_city = group_by_key(users, 'city')
import json
from deepdiff import DeepDiff
def json_diff(obj1, obj2):
"""Compare two JSON objects and return differences"""
diff = DeepDiff(obj1, obj2, ignore_order=True)
return diff
# Example
old = {
"name": "John",
"age": 30,
"addresses": [{"city": "New York"}]
}
new = {
"name": "John",
"age": 31,
"addresses": [{"city": "San Francisco"}]
}
diff = json_diff(old, new)
print(json.dumps(diff, indent=2))
# Manual diff
def simple_diff(obj1, obj2, path=""):
"""Simple diff implementation"""
diffs = []
if type(obj1) != type(obj2):
diffs.append(f"{path}: type changed from {type(obj1)} to {type(obj2)}")
return diffs
if isinstance(obj1, dict):
all_keys = set(obj1.keys()) | set(obj2.keys())
for key in all_keys:
new_path = f"{path}.{key}" if path else key
if key not in obj1:
diffs.append(f"{new_path}: added")
elif key not in obj2:
diffs.append(f"{new_path}: removed")
elif obj1[key] != obj2[key]:
diffs.extend(simple_diff(obj1[key], obj2[key], new_path))
elif isinstance(obj1, list):
if len(obj1) != len(obj2):
diffs.append(f"{path}: length changed from {len(obj1)} to {len(obj2)}")
for i, (item1, item2) in enumerate(zip(obj1, obj2)):
diffs.extend(simple_diff(item1, item2, f"{path}[{i}]"))
elif obj1 != obj2:
diffs.append(f"{path}: changed from {obj1} to {obj2}")
return diffs
def generate_schema(data, name="root"):
"""
Generate JSON Schema from data
"""
if isinstance(data, dict):
properties = {}
required = []
for key, value in data.items():
properties[key] = generate_schema(value, key)
if value is not None:
required.append(key)
schema = {
"type": "object",
"properties": properties
}
if required:
schema["required"] = required
return schema
elif isinstance(data, list):
if data:
return {
"type": "array",
"items": generate_schema(data[0], name)
}
return {"type": "array"}
elif isinstance(data, bool):
return {"type": "boolean"}
elif isinstance(data, int):
return {"type": "integer"}
elif isinstance(data, float):
return {"type": "number"}
elif isinstance(data, str):
return {"type": "string"}
elif data is None:
return {"type": "null"}
return {}
# Example
sample_data = {
"name": "John",
"age": 30,
"email": "john@example.com",
"active": True,
"tags": ["developer", "admin"],
"address": {
"city": "New York",
"zip": "10001"
}
}
schema = generate_schema(sample_data)
print(json.dumps(schema, indent=2))
from pygments import highlight
from pygments.lexers import JsonLexer
from pygments.formatters import TerminalFormatter
def pretty_print_json(data):
"""Print JSON with syntax highlighting"""
json_str = json.dumps(data, indent=2, sort_keys=True)
print(highlight(json_str, JsonLexer(), TerminalFormatter()))
def safe_get(data, path, default=None):
"""
Safely get nested value from JSON
path: "user.address.city" or ["user", "address", "city"]
"""
if isinstance(path, str):
path = path.split('.')
current = data
for key in path:
if isinstance(current, dict):
current = current.get(key)
elif isinstance(current, list) and key.isdigit():
index = int(key)
current = current[index] if 0 <= index < len(current) else None
else:
return default
if current is None:
return default
return current
# Example
data = {"user": {"address": {"city": "New York"}}}
city = safe_get(data, "user.address.city") # "New York"
country = safe_get(data, "user.address.country", "Unknown") # "Unknown"
# Format JSON
cat messy.json | jq '.'
# Extract specific fields
cat data.json | jq '.users[] | {name, email}'
# Filter arrays
cat data.json | jq '.[] | select(.age > 30)'
# Transform keys to lowercase
cat data.json | jq 'with_entries(.key |= ascii_downcase)'
# Merge multiple JSON files
jq -s 'add' file1.json file2.json file3.json
# Convert to CSV
cat data.json | jq -r '.[] | [.name, .age, .email] | @csv'
# Pretty print
python -m json.tool input.json
# Compact output
python -c "import json; print(json.dumps(json.load(open('data.json')), separators=(',',':')))"
# Extract field
python -c "import json; data=json.load(open('data.json')); print(data['users'][0]['name'])"
def transform_api_response(response):
"""Transform API response to application format"""
return {
"users": [
{
"id": user["userId"],
"name": f"{user['firstName']} {user['lastName']}",
"email": user["emailAddress"],
"active": user["status"] == "active"
}
for user in response.get("data", {}).get("users", [])
],
"pagination": {
"page": response.get("page", 1),
"total": response.get("totalResults", 0)
}
}
def merge_configs(base_config, user_config):
"""Merge user configuration with base configuration"""
result = deep_merge(base_config, user_config)
# Validate required fields
required = ["database", "api_key"]
for field in required:
if field not in result:
raise ValueError(f"Missing required field: {field}")
return result
This skill should be used when the user asks to "create a slash command", "add a command", "write a custom command", "define command arguments", "use command frontmatter", "organize commands", "create command with file references", "interactive command", "use AskUserQuestion in command", or needs guidance on slash command structure, YAML frontmatter fields, dynamic arguments, bash execution in commands, user interaction patterns, or command development best practices for Claude Code.
This skill should be used when the user asks to "create an agent", "add an agent", "write a subagent", "agent frontmatter", "when to use description", "agent examples", "agent tools", "agent colors", "autonomous agent", or needs guidance on agent structure, system prompts, triggering conditions, or agent development best practices for Claude Code plugins.
This skill should be used when the user asks to "create a hook", "add a PreToolUse/PostToolUse/Stop hook", "validate tool use", "implement prompt-based hooks", "use ${CLAUDE_PLUGIN_ROOT}", "set up event-driven automation", "block dangerous commands", or mentions hook events (PreToolUse, PostToolUse, Stop, SubagentStop, SessionStart, SessionEnd, UserPromptSubmit, PreCompact, Notification). Provides comprehensive guidance for creating and implementing Claude Code plugin hooks with focus on advanced prompt-based hooks API.