Parse, transform, and analyze CSV files with advanced data manipulation capabilities.
Processes CSV files with advanced parsing, cleaning, transformation, and analysis capabilities. Automatically invoked when you need to filter, merge, clean, or analyze CSV data.
/plugin marketplace add CuriousLearner/devkit/plugin install devkit@devkit-marketplaceThis skill inherits all available tools. When active, it can use any tool Claude has access to.
Parse, transform, and analyze CSV files with advanced data manipulation capabilities.
You are a CSV processing expert. When invoked:
Parse CSV Files:
Transform Data:
Clean Data:
Analyze Data:
@csv-processor data.csv
@csv-processor --filter "age > 30"
@csv-processor --select "name,email,age"
@csv-processor --merge file1.csv file2.csv
@csv-processor --stats
@csv-processor --clean --remove-duplicates
import pandas as pd
# Basic read
df = pd.read_csv('data.csv')
# Custom delimiter
df = pd.read_csv('data.tsv', delimiter='\t')
# Specify encoding
df = pd.read_csv('data.csv', encoding='latin-1')
# Skip rows
df = pd.read_csv('data.csv', skiprows=2)
# Select specific columns
df = pd.read_csv('data.csv', usecols=['name', 'email', 'age'])
# Parse dates
df = pd.read_csv('data.csv', parse_dates=['created_at', 'updated_at'])
# Handle missing values
df = pd.read_csv('data.csv', na_values=['NA', 'N/A', 'null', ''])
# Specify data types
df = pd.read_csv('data.csv', dtype={
'user_id': int,
'age': int,
'score': float,
'active': bool
})
const fs = require('fs');
const csv = require('csv-parser');
// Basic parsing
const results = [];
fs.createReadStream('data.csv')
.pipe(csv())
.on('data', (row) => {
results.push(row);
})
.on('end', () => {
console.log(`Processed ${results.length} rows`);
});
// With custom options
const Papa = require('papaparse');
Papa.parse(fs.createReadStream('data.csv'), {
header: true,
delimiter: ',',
skipEmptyLines: true,
transformHeader: (header) => header.trim().toLowerCase(),
complete: (results) => {
console.log('Parsed:', results.data);
}
});
import csv
# Basic reading
with open('data.csv', 'r', encoding='utf-8') as file:
reader = csv.DictReader(file)
for row in reader:
print(row['name'], row['age'])
# Custom delimiter
with open('data.csv', 'r') as file:
reader = csv.reader(file, delimiter='\t')
for row in reader:
print(row)
# Handle different dialects
with open('data.csv', 'r') as file:
dialect = csv.Sniffer().sniff(file.read(1024))
file.seek(0)
reader = csv.reader(file, dialect)
for row in reader:
print(row)
# Basic write
df.to_csv('output.csv', index=False)
# Custom delimiter
df.to_csv('output.tsv', sep='\t', index=False)
# Specify encoding
df.to_csv('output.csv', encoding='utf-8-sig', index=False)
# Write only specific columns
df[['name', 'email']].to_csv('output.csv', index=False)
# Append to existing file
df.to_csv('output.csv', mode='a', header=False, index=False)
# Quote all fields
df.to_csv('output.csv', quoting=csv.QUOTE_ALL, index=False)
const createCsvWriter = require('csv-writer').createObjectCsvWriter;
const csvWriter = createCsvWriter({
path: 'output.csv',
header: [
{id: 'name', title: 'Name'},
{id: 'email', title: 'Email'},
{id: 'age', title: 'Age'}
]
});
const records = [
{name: 'John Doe', email: 'john@example.com', age: 30},
{name: 'Jane Smith', email: 'jane@example.com', age: 25}
];
csvWriter.writeRecords(records)
.then(() => console.log('CSV file written successfully'));
# Single condition
filtered = df[df['age'] > 30]
# Multiple conditions (AND)
filtered = df[(df['age'] > 30) & (df['country'] == 'USA')]
# Multiple conditions (OR)
filtered = df[(df['age'] < 18) | (df['age'] > 65)]
# String operations
filtered = df[df['email'].str.contains('@gmail.com')]
filtered = df[df['name'].str.startswith('John')]
# Is in list
filtered = df[df['country'].isin(['USA', 'Canada', 'Mexico'])]
# Not null values
filtered = df[df['email'].notna()]
# Complex conditions
filtered = df.query('age > 30 and country == "USA" and active == True')
// Filter with arrow function
const filtered = data.filter(row => row.age > 30);
// Multiple conditions
const filtered = data.filter(row =>
row.age > 30 && row.country === 'USA'
);
// String operations
const filtered = data.filter(row =>
row.email.includes('@gmail.com')
);
// Complex filtering
const filtered = data.filter(row => {
const age = parseInt(row.age);
return age >= 18 && age <= 65 && row.active === 'true';
});
# Select single column
names = df['name']
# Select multiple columns
subset = df[['name', 'email', 'age']]
# Select by column type
numeric_cols = df.select_dtypes(include=['int64', 'float64'])
string_cols = df.select_dtypes(include=['object'])
# Select columns matching pattern
email_cols = df.filter(regex='.*email.*')
# Drop columns
df_without = df.drop(['temporary', 'unused'], axis=1)
# Rename columns
df_renamed = df.rename(columns={
'old_name': 'new_name',
'email_address': 'email'
})
// Map to select columns
const subset = data.map(row => ({
name: row.name,
email: row.email,
age: row.age
}));
// Destructuring
const subset = data.map(({name, email, age}) => ({name, email, age}));
// Dynamic column selection
const columns = ['name', 'email', 'age'];
const subset = data.map(row =>
Object.fromEntries(
columns.map(col => [col, row[col]])
)
);
# Sort by single column
sorted_df = df.sort_values('age')
# Sort descending
sorted_df = df.sort_values('age', ascending=False)
# Sort by multiple columns
sorted_df = df.sort_values(['country', 'age'], ascending=[True, False])
# Sort by index
sorted_df = df.sort_index()
// Sort by single field
const sorted = data.sort((a, b) => a.age - b.age);
// Sort descending
const sorted = data.sort((a, b) => b.age - a.age);
// Sort by string
const sorted = data.sort((a, b) => a.name.localeCompare(b.name));
// Sort by multiple fields
const sorted = data.sort((a, b) => {
if (a.country !== b.country) {
return a.country.localeCompare(b.country);
}
return b.age - a.age;
});
# Group by single column
grouped = df.groupby('country')
# Count by group
counts = df.groupby('country').size()
# Multiple aggregations
stats = df.groupby('country').agg({
'age': ['mean', 'min', 'max'],
'salary': ['sum', 'mean'],
'user_id': 'count'
})
# Group by multiple columns
grouped = df.groupby(['country', 'city']).agg({
'revenue': 'sum',
'user_id': 'count'
})
# Custom aggregation
df.groupby('country').apply(lambda x: x['salary'].max() - x['salary'].min())
# Pivot table
pivot = df.pivot_table(
values='revenue',
index='country',
columns='year',
aggfunc='sum',
fill_value=0
)
const _ = require('lodash');
// Group by field
const grouped = _.groupBy(data, 'country');
// Count by group
const counts = _.mapValues(
_.groupBy(data, 'country'),
group => group.length
);
// Sum by group
const sums = _.mapValues(
_.groupBy(data, 'country'),
group => _.sumBy(group, row => parseFloat(row.salary))
);
// Multiple aggregations
const stats = Object.entries(_.groupBy(data, 'country')).map(([country, rows]) => ({
country,
count: rows.length,
avgAge: _.meanBy(rows, row => parseInt(row.age)),
totalSalary: _.sumBy(rows, row => parseFloat(row.salary))
}));
# Concatenate vertically (stack rows)
df1 = pd.read_csv('file1.csv')
df2 = pd.read_csv('file2.csv')
combined = pd.concat([df1, df2], ignore_index=True)
# Join (SQL-like merge)
users = pd.read_csv('users.csv')
orders = pd.read_csv('orders.csv')
# Inner join
merged = pd.merge(users, orders, on='user_id', how='inner')
# Left join
merged = pd.merge(users, orders, on='user_id', how='left')
# Multiple keys
merged = pd.merge(
users, orders,
left_on='id',
right_on='user_id',
how='left'
)
# Merge with different column names
merged = pd.merge(
users, orders,
left_on='user_id',
right_on='customer_id',
how='inner'
)
// Concatenate arrays
const file1 = parseCSV('file1.csv');
const file2 = parseCSV('file2.csv');
const combined = [...file1, ...file2];
// Join arrays (like SQL)
function leftJoin(left, right, leftKey, rightKey) {
return left.map(leftRow => {
const rightRow = right.find(r => r[rightKey] === leftRow[leftKey]);
return {...leftRow, ...rightRow};
});
}
const merged = leftJoin(users, orders, 'id', 'user_id');
# Remove duplicate rows
df_unique = df.drop_duplicates()
# Based on specific columns
df_unique = df.drop_duplicates(subset=['email'])
# Keep first or last occurrence
df_unique = df.drop_duplicates(subset=['email'], keep='first')
df_unique = df.drop_duplicates(subset=['email'], keep='last')
# Identify duplicates
duplicates = df[df.duplicated()]
duplicate_emails = df[df.duplicated(subset=['email'])]
# Check for missing values
missing_count = df.isnull().sum()
missing_percent = (df.isnull().sum() / len(df)) * 100
# Drop rows with any missing values
df_clean = df.dropna()
# Drop rows where specific column is missing
df_clean = df.dropna(subset=['email'])
# Drop columns with too many missing values
df_clean = df.dropna(axis=1, thresh=len(df)*0.7)
# Fill missing values
df_filled = df.fillna(0)
df_filled = df.fillna({'age': 0, 'country': 'Unknown'})
# Forward fill
df_filled = df.fillna(method='ffill')
# Fill with mean/median
df['age'].fillna(df['age'].mean(), inplace=True)
df['age'].fillna(df['age'].median(), inplace=True)
# Interpolate
df['value'].interpolate(method='linear', inplace=True)
// Filter out rows with missing values
const cleaned = data.filter(row =>
row.email && row.name && row.age
);
// Fill missing values
const filled = data.map(row => ({
...row,
age: row.age || 0,
country: row.country || 'Unknown'
}));
# Validate email format
import re
email_pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
df['email_valid'] = df['email'].str.match(email_pattern)
# Validate age range
df['age_valid'] = df['age'].between(0, 120)
# Validate required fields
df['valid'] = df[['name', 'email', 'age']].notna().all(axis=1)
# Check data types
def validate_types(df):
errors = []
# Check numeric columns
for col in ['age', 'salary', 'score']:
if col in df.columns:
if not pd.api.types.is_numeric_dtype(df[col]):
errors.append(f"{col} should be numeric")
# Check date columns
for col in ['created_at', 'updated_at']:
if col in df.columns:
try:
pd.to_datetime(df[col])
except:
errors.append(f"{col} has invalid dates")
return errors
# Remove invalid rows
df_valid = df[df['email_valid'] & df['age_valid']]
# Trim whitespace
df['name'] = df['name'].str.strip()
df['email'] = df['email'].str.strip()
# Convert to lowercase
df['email'] = df['email'].str.lower()
# Standardize phone numbers
df['phone'] = df['phone'].str.replace(r'[^0-9]', '', regex=True)
# Standardize dates
df['created_at'] = pd.to_datetime(df['created_at'])
# Standardize country names
country_mapping = {
'USA': 'United States',
'US': 'United States',
'United States of America': 'United States',
'UK': 'United Kingdom'
}
df['country'] = df['country'].replace(country_mapping)
# Convert data types
df['age'] = pd.to_numeric(df['age'], errors='coerce')
df['active'] = df['active'].astype(bool)
df['score'] = df['score'].astype(float)
# Basic statistics
print(df.describe())
# Statistics for all columns (including non-numeric)
print(df.describe(include='all'))
# Specific statistics
print(f"Mean age: {df['age'].mean()}")
print(f"Median age: {df['age'].median()}")
print(f"Std dev: {df['age'].std()}")
print(f"Min: {df['age'].min()}")
print(f"Max: {df['age'].max()}")
# Count values
print(df['country'].value_counts())
# Percentage distribution
print(df['country'].value_counts(normalize=True) * 100)
# Cross-tabulation
cross_tab = pd.crosstab(df['country'], df['active'])
# Correlation matrix
correlation = df[['age', 'salary', 'score']].corr()
def profile_dataframe(df):
"""Generate comprehensive data profile"""
profile = {
'shape': df.shape,
'columns': list(df.columns),
'dtypes': df.dtypes.to_dict(),
'memory_usage': df.memory_usage(deep=True).sum() / 1024**2, # MB
'missing_values': df.isnull().sum().to_dict(),
'missing_percent': (df.isnull().sum() / len(df) * 100).to_dict(),
'duplicates': df.duplicated().sum(),
'numeric_summary': df.describe().to_dict(),
'unique_counts': df.nunique().to_dict()
}
# Column-specific analysis
for col in df.columns:
profile[f'{col}_sample'] = df[col].head(5).tolist()
if df[col].dtype == 'object':
profile[f'{col}_top_values'] = df[col].value_counts().head(10).to_dict()
if pd.api.types.is_numeric_dtype(df[col]):
profile[f'{col}_outliers'] = detect_outliers(df[col])
return profile
def detect_outliers(series):
"""Detect outliers using IQR method"""
Q1 = series.quantile(0.25)
Q3 = series.quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
outliers = series[(series < lower_bound) | (series > upper_bound)]
return {
'count': len(outliers),
'percent': (len(outliers) / len(series)) * 100,
'values': outliers.tolist()
}
def generate_csv_report(df, filename='report.md'):
"""Generate comprehensive analysis report"""
report = f"""# CSV Analysis Report
Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
## Dataset Overview
- **Rows**: {len(df):,}
- **Columns**: {len(df.columns)}
- **Memory Usage**: {df.memory_usage(deep=True).sum() / 1024**2:.2f} MB
- **Duplicates**: {df.duplicated().sum():,}
## Column Summary
| Column | Type | Non-Null | Unique | Missing % |
|--------|------|----------|--------|-----------|
"""
for col in df.columns:
dtype = str(df[col].dtype)
non_null = df[col].count()
unique = df[col].nunique()
missing_pct = (df[col].isnull().sum() / len(df)) * 100
report += f"| {col} | {dtype} | {non_null:,} | {unique:,} | {missing_pct:.1f}% |\n"
report += "\n## Numeric Columns Statistics\n\n"
report += df.describe().to_markdown()
report += "\n\n## Data Quality Issues\n\n"
# Missing values
missing = df.isnull().sum()
if missing.sum() > 0:
report += "### Missing Values\n"
for col, count in missing[missing > 0].items():
pct = (count / len(df)) * 100
report += f"- **{col}**: {count:,} ({pct:.1f}%)\n"
# Duplicates
if df.duplicated().sum() > 0:
report += f"\n### Duplicates\n"
report += f"- Found {df.duplicated().sum():,} duplicate rows\n"
# Write report
with open(filename, 'w') as f:
f.write(report)
print(f"Report generated: {filename}")
def split_csv(input_file, rows_per_file=10000):
"""Split large CSV into smaller chunks"""
chunk_num = 0
for chunk in pd.read_csv(input_file, chunksize=rows_per_file):
output_file = f"{input_file.rsplit('.', 1)[0]}_part{chunk_num}.csv"
chunk.to_csv(output_file, index=False)
print(f"Created {output_file} with {len(chunk)} rows")
chunk_num += 1
# Pivot (wide format)
pivot = df.pivot_table(
values='revenue',
index='product',
columns='month',
aggfunc='sum'
)
# Unpivot (long format)
melted = df.melt(
id_vars=['product', 'category'],
value_vars=['jan', 'feb', 'mar'],
var_name='month',
value_name='revenue'
)
# Convert columns
df['age'] = pd.to_numeric(df['age'], errors='coerce')
df['created_at'] = pd.to_datetime(df['created_at'])
df['active'] = df['active'].astype(bool)
# Parse custom date formats
df['date'] = pd.to_datetime(df['date'], format='%d/%m/%Y')
# Handle mixed types
df['mixed'] = df['mixed'].astype(str)
# Read in chunks
chunk_size = 10000
chunks = []
for chunk in pd.read_csv('large_file.csv', chunksize=chunk_size):
# Process chunk
processed = chunk[chunk['active'] == True]
chunks.append(processed)
result = pd.concat(chunks, ignore_index=True)
# Read only needed columns
df = pd.read_csv('large_file.csv', usecols=['name', 'email', 'age'])
# Use appropriate dtypes
df = pd.read_csv('large_file.csv', dtype={
'id': 'int32', # instead of int64
'age': 'int8', # small integers
'category': 'category' # categorical data
})
# Write in chunks
chunk_size = 10000
for i in range(0, len(df), chunk_size):
chunk = df.iloc[i:i+chunk_size]
mode = 'w' if i == 0 else 'a'
header = i == 0
chunk.to_csv('output.csv', mode=mode, header=header, index=False)
# View CSV structure
csvcut -n data.csv
# Filter columns
csvcut -c name,email,age data.csv > subset.csv
# Filter rows
csvgrep -c age -r "^[3-9][0-9]$" data.csv > age_30plus.csv
# Convert to JSON
csvjson data.csv > data.json
# Statistics
csvstat data.csv
# SQL queries on CSV
csvsql --query "SELECT country, COUNT(*) FROM data GROUP BY country" data.csv
# Print specific columns
awk -F',' '{print $1, $3}' data.csv
# Filter rows
awk -F',' '$3 > 30' data.csv
# Sum column
awk -F',' '{sum+=$3} END {print sum}' data.csv
# Try different encodings
for encoding in ['utf-8', 'latin-1', 'cp1252', 'iso-8859-1']:
try:
df = pd.read_csv('data.csv', encoding=encoding)
print(f"Success with encoding: {encoding}")
break
except UnicodeDecodeError:
continue
# Auto-detect delimiter
with open('data.csv', 'r') as file:
sample = file.read(1024)
sniffer = csv.Sniffer()
delimiter = sniffer.sniff(sample).delimiter
df = pd.read_csv('data.csv', delimiter=delimiter)
# Use chunking
chunks = []
for chunk in pd.read_csv('large.csv', chunksize=10000):
# Process and filter
processed = chunk[chunk['keep'] == True]
chunks.append(processed)
df = pd.concat(chunks, ignore_index=True)
This skill should be used when the user asks to "create an agent", "add an agent", "write a subagent", "agent frontmatter", "when to use description", "agent examples", "agent tools", "agent colors", "autonomous agent", or needs guidance on agent structure, system prompts, triggering conditions, or agent development best practices for Claude Code plugins.
This skill should be used when the user asks to "create a slash command", "add a command", "write a custom command", "define command arguments", "use command frontmatter", "organize commands", "create command with file references", "interactive command", "use AskUserQuestion in command", or needs guidance on slash command structure, YAML frontmatter fields, dynamic arguments, bash execution in commands, user interaction patterns, or command development best practices for Claude Code.
This skill should be used when the user asks to "create a hook", "add a PreToolUse/PostToolUse/Stop hook", "validate tool use", "implement prompt-based hooks", "use ${CLAUDE_PLUGIN_ROOT}", "set up event-driven automation", "block dangerous commands", or mentions hook events (PreToolUse, PostToolUse, Stop, SubagentStop, SessionStart, SessionEnd, UserPromptSubmit, PreCompact, Notification). Provides comprehensive guidance for creating and implementing Claude Code plugin hooks with focus on advanced prompt-based hooks API.