This skill should be used when the user asks to "add AI chat", "implement streaming UI", "use useChat hook", "add AI completion", "implement useCompletion", "create conversational interface", "add streaming text", "implement tool calling UI", "create generative UI", "add AI-powered features", "implement StreamableUI", or mentions AI SDK, streaming responses, chat interfaces, or AI-generated content in React/Next.js applications.
Adds AI chat, streaming UI, and completion features to React/Next.js apps using Vercel AI SDK. Use when user requests chat interfaces, streaming text, tool calling UI, or generative UI components.
/plugin marketplace add constellos/claude-code-plugins/plugin install enhanced-context@constellos-localThis skill inherits all available tools. When active, it can use any tool Claude has access to.
references/advanced-patterns.mdImplement AI-powered user interfaces with the Vercel AI SDK. This skill covers streaming UI patterns, conversational interfaces, completion features, tool calling with visual feedback, and generative UI using React Server Components.
When to use:
The AI SDK provides React hooks for client-side AI interactions:
useChat - Conversational interfaces with message history:
'use client';
import { useChat } from 'ai/react';
export function ChatInterface() {
const { messages, input, handleInputChange, handleSubmit, isLoading } = useChat({
api: '/api/chat',
});
return (
<div className="flex flex-col h-full">
<div className="flex-1 overflow-y-auto p-4 space-y-4">
{messages.map((message) => (
<div
key={message.id}
className={message.role === 'user' ? 'text-right' : 'text-left'}
>
<div className={`inline-block p-3 rounded-lg ${
message.role === 'user'
? 'bg-blue-500 text-white'
: 'bg-gray-100 text-gray-900'
}`}>
{message.content}
</div>
</div>
))}
</div>
<form onSubmit={handleSubmit} className="p-4 border-t">
<div className="flex gap-2">
<input
value={input}
onChange={handleInputChange}
placeholder="Type a message..."
className="flex-1 p-2 border rounded"
disabled={isLoading}
/>
<button
type="submit"
disabled={isLoading}
className="px-4 py-2 bg-blue-500 text-white rounded disabled:opacity-50"
>
{isLoading ? 'Sending...' : 'Send'}
</button>
</div>
</form>
</div>
);
}
useCompletion - Single completions without message history:
'use client';
import { useCompletion } from 'ai/react';
export function CompletionInput() {
const { completion, input, handleInputChange, handleSubmit, isLoading } = useCompletion({
api: '/api/completion',
});
return (
<div className="space-y-4">
<form onSubmit={handleSubmit}>
<textarea
value={input}
onChange={handleInputChange}
placeholder="Enter prompt..."
className="w-full p-3 border rounded"
rows={4}
/>
<button
type="submit"
disabled={isLoading}
className="mt-2 px-4 py-2 bg-green-500 text-white rounded"
>
{isLoading ? 'Generating...' : 'Generate'}
</button>
</form>
{completion && (
<div className="p-4 bg-gray-50 rounded">
<h3 className="font-semibold mb-2">Result:</h3>
<p className="whitespace-pre-wrap">{completion}</p>
</div>
)}
</div>
);
}
Create API routes that stream responses:
Chat API Route (app/api/chat/route.ts):
import { openai } from '@ai-sdk/openai';
import { streamText } from 'ai';
export async function POST(req: Request) {
const { messages } = await req.json();
const result = streamText({
model: openai('gpt-4o'),
messages,
system: 'You are a helpful assistant.',
});
return result.toDataStreamResponse();
}
Completion API Route (app/api/completion/route.ts):
import { openai } from '@ai-sdk/openai';
import { streamText } from 'ai';
export async function POST(req: Request) {
const { prompt } = await req.json();
const result = streamText({
model: openai('gpt-4o'),
prompt,
});
return result.toDataStreamResponse();
}
Token-by-token streaming display:
'use client';
import { useChat } from 'ai/react';
export function StreamingChat() {
const { messages, input, handleInputChange, handleSubmit } = useChat();
return (
<div>
{messages.map((message) => (
<div key={message.id}>
<strong>{message.role}:</strong>
{/* Content streams in token-by-token */}
<span className="animate-pulse">{message.content}</span>
</div>
))}
<form onSubmit={handleSubmit}>
<input value={input} onChange={handleInputChange} />
<button type="submit">Send</button>
</form>
</div>
);
}
Loading states and indicators:
'use client';
import { useChat } from 'ai/react';
export function ChatWithLoadingStates() {
const { messages, input, handleInputChange, handleSubmit, isLoading, error } = useChat();
return (
<div>
{messages.map((message) => (
<div key={message.id}>{message.content}</div>
))}
{isLoading && (
<div className="flex items-center gap-2 text-gray-500">
<div className="animate-spin h-4 w-4 border-2 border-gray-300 border-t-blue-500 rounded-full" />
<span>AI is thinking...</span>
</div>
)}
{error && (
<div className="text-red-500 p-2 bg-red-50 rounded">
Error: {error.message}
</div>
)}
<form onSubmit={handleSubmit}>
<input
value={input}
onChange={handleInputChange}
disabled={isLoading}
/>
<button type="submit" disabled={isLoading}>
Send
</button>
</form>
</div>
);
}
Implement tools that Claude can call with visual feedback:
Server-side tool definition:
import { openai } from '@ai-sdk/openai';
import { streamText, tool } from 'ai';
import { z } from 'zod';
export async function POST(req: Request) {
const { messages } = await req.json();
const result = streamText({
model: openai('gpt-4o'),
messages,
tools: {
getWeather: tool({
description: 'Get current weather for a location',
parameters: z.object({
location: z.string().describe('City name'),
}),
execute: async ({ location }) => {
// Fetch weather data
return { temperature: 72, condition: 'sunny', location };
},
}),
searchProducts: tool({
description: 'Search for products',
parameters: z.object({
query: z.string(),
maxResults: z.number().optional().default(5),
}),
execute: async ({ query, maxResults }) => {
// Search products
return { results: [], query, count: 0 };
},
}),
},
});
return result.toDataStreamResponse();
}
Client-side tool result rendering:
'use client';
import { useChat } from 'ai/react';
function WeatherCard({ data }: { data: { temperature: number; condition: string; location: string } }) {
return (
<div className="p-4 bg-blue-50 rounded-lg">
<h3 className="font-semibold">{data.location}</h3>
<p className="text-2xl">{data.temperature}°F</p>
<p className="text-gray-600">{data.condition}</p>
</div>
);
}
export function ChatWithTools() {
const { messages, input, handleInputChange, handleSubmit } = useChat({
maxSteps: 5, // Allow multi-step tool use
});
return (
<div>
{messages.map((message) => (
<div key={message.id}>
{message.role === 'assistant' && message.toolInvocations?.map((tool) => (
<div key={tool.toolCallId}>
{tool.toolName === 'getWeather' && tool.state === 'result' && (
<WeatherCard data={tool.result} />
)}
{tool.state === 'call' && (
<div className="animate-pulse p-2 bg-gray-100 rounded">
Calling {tool.toolName}...
</div>
)}
</div>
))}
{message.content && <p>{message.content}</p>}
</div>
))}
<form onSubmit={handleSubmit}>
<input value={input} onChange={handleInputChange} />
<button type="submit">Send</button>
</form>
</div>
);
}
Use streamUI for server-side streaming of React components:
Server Action with streamUI:
'use server';
import { openai } from '@ai-sdk/openai';
import { streamUI } from 'ai/rsc';
import { z } from 'zod';
export async function generateUI(prompt: string) {
const result = await streamUI({
model: openai('gpt-4o'),
prompt,
tools: {
showWeather: {
description: 'Show weather widget',
parameters: z.object({
location: z.string(),
temperature: z.number(),
}),
generate: async function* ({ location, temperature }) {
yield <div className="animate-pulse">Loading weather...</div>;
// Simulate API call
await new Promise(resolve => setTimeout(resolve, 1000));
return (
<div className="p-4 bg-gradient-to-r from-blue-400 to-blue-600 text-white rounded-lg">
<h3 className="text-xl font-bold">{location}</h3>
<p className="text-3xl">{temperature}°F</p>
</div>
);
},
},
showStockChart: {
description: 'Show stock price chart',
parameters: z.object({
symbol: z.string(),
price: z.number(),
}),
generate: async function* ({ symbol, price }) {
yield <div>Loading {symbol} data...</div>;
return (
<div className="p-4 border rounded-lg">
<h3 className="font-bold">{symbol}</h3>
<p className="text-2xl text-green-600">${price}</p>
</div>
);
},
},
},
});
return result.value;
}
Client component consuming streamUI:
'use client';
import { useState } from 'react';
import { generateUI } from './actions';
export function GenerativeUIDemo() {
const [ui, setUI] = useState<React.ReactNode>(null);
const [prompt, setPrompt] = useState('');
const [isLoading, setIsLoading] = useState(false);
async function handleSubmit(e: React.FormEvent) {
e.preventDefault();
setIsLoading(true);
const result = await generateUI(prompt);
setUI(result);
setIsLoading(false);
}
return (
<div className="space-y-4">
<form onSubmit={handleSubmit} className="flex gap-2">
<input
value={prompt}
onChange={(e) => setPrompt(e.target.value)}
placeholder="Ask about weather, stocks..."
className="flex-1 p-2 border rounded"
/>
<button
type="submit"
disabled={isLoading}
className="px-4 py-2 bg-purple-500 text-white rounded"
>
Generate
</button>
</form>
<div className="min-h-[200px] p-4 border rounded">
{ui || <p className="text-gray-400">Generated UI will appear here</p>}
</div>
</div>
);
}
Performance:
maxSteps to limit tool calling depthError Handling:
error state from hooksAccessibility:
Security:
For detailed patterns and advanced techniques:
references/advanced-patterns.md - Multi-modal AI, conversation memory, custom providersThis skill should be used when the user asks to "create an agent", "add an agent", "write a subagent", "agent frontmatter", "when to use description", "agent examples", "agent tools", "agent colors", "autonomous agent", or needs guidance on agent structure, system prompts, triggering conditions, or agent development best practices for Claude Code plugins.
This skill should be used when the user asks to "create a slash command", "add a command", "write a custom command", "define command arguments", "use command frontmatter", "organize commands", "create command with file references", "interactive command", "use AskUserQuestion in command", or needs guidance on slash command structure, YAML frontmatter fields, dynamic arguments, bash execution in commands, user interaction patterns, or command development best practices for Claude Code.
This skill should be used when the user asks to "create a hook", "add a PreToolUse/PostToolUse/Stop hook", "validate tool use", "implement prompt-based hooks", "use ${CLAUDE_PLUGIN_ROOT}", "set up event-driven automation", "block dangerous commands", or mentions hook events (PreToolUse, PostToolUse, Stop, SubagentStop, SessionStart, SessionEnd, UserPromptSubmit, PreCompact, Notification). Provides comprehensive guidance for creating and implementing Claude Code plugin hooks with focus on advanced prompt-based hooks API.