Training manager for Hugging Face Jobs - launch fine-tuning on HF cloud GPUs with optional WandB monitoring
/plugin marketplace add chrisvoncsefalvay/funsloth/plugin install funsloth@funslothThis skill inherits all available tools. When active, it can use any tool Claude has access to.
references/HARDWARE_GUIDE.mdreferences/PLATFORM_COMPARISON.mdreferences/TROUBLESHOOTING.mdscripts/estimate_cost.pyscripts/train_sft.pyRun Unsloth training on Hugging Face Jobs (cloud GPU training).
huggingface-cli whoami (login if needed)funsloth-train| GPU | VRAM | Cost | Best For |
|---|---|---|---|
| A10G | 24GB | ~$1.50/hr | 7-14B LoRA |
| A100 40GB | 40GB | ~$4/hr | 14-34B |
| A100 80GB | 80GB | ~$6/hr | 70B |
| H100 | 80GB | ~$8/hr | Fastest |
See references/HARDWARE_GUIDE.md for model-to-GPU mapping.
HF Jobs requires PEP 723 script format:
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git",
# "torch>=2.0",
# "transformers>=4.45",
# "trl>=0.12",
# "peft>=0.13",
# "datasets>=2.18",
# ]
# ///
Use scripts/train_sft.py as a template.
Add to script:
import wandb
wandb.init(project="funsloth-training")
# Add report_to="wandb" in TrainingArguments
Set: export WANDB_API_KEY="your-key"
Use the cost estimator:
python scripts/estimate_cost.py --tokens {total_tokens} --platform hfjobs
# Create job config
cat > job_config.yaml << 'EOF'
compute:
gpu: {gpu_type}
gpu_count: 1
script: train_hfjobs.py
outputs:
- /outputs/*
EOF
# Submit
huggingface-cli jobs create --config job_config.yaml
huggingface-cli jobs status {job_id}
huggingface-cli jobs logs {job_id} --follow
WandB: https://wandb.ai/{username}/funsloth-training
from huggingface_hub import snapshot_download
snapshot_download(repo_id="{username}/funsloth-job", local_dir="./outputs")
Offer funsloth-upload for Hub upload with model card.
| Error | Resolution |
|---|---|
| No HF Jobs access | Get PRO subscription |
| OOM | Reduce batch size or upgrade GPU |
| Job timeout | Enable checkpointing |
| Script error | Check PEP 723 dependencies |
Use when working with Payload CMS projects (payload.config.ts, collections, fields, hooks, access control, Payload API). Use when debugging validation errors, security issues, relationship queries, transactions, or hook behavior.
Applies Anthropic's official brand colors and typography to any sort of artifact that may benefit from having Anthropic's look-and-feel. Use it when brand colors or style guidelines, visual formatting, or company design standards apply.
Creating algorithmic art using p5.js with seeded randomness and interactive parameter exploration. Use this when users request creating art using code, generative art, algorithmic art, flow fields, or particle systems. Create original algorithmic art rather than copying existing artists' work to avoid copyright violations.