Comprehensive Bayesian statistical modeling using Stan-based packages (brms, rstanarm), covering prior specification, posterior analysis, model comparison, and Bayesian workflow best practices.
/plugin marketplace add choxos/BiostatAgent/plugin install choxos-r-tidy-modeling-plugins-r-tidy-modeling@choxos/BiostatAgentThis skill inherits all available tools. When active, it can use any tool Claude has access to.
Comprehensive Bayesian statistical modeling using Stan-based packages (brms, rstanarm), covering prior specification, posterior analysis, model comparison, and Bayesian workflow best practices.
library(brms)
# Linear regression
fit <- brm(
formula = y ~ x1 + x2,
data = df,
family = gaussian(),
seed = 123
)
# Logistic regression
fit_logit <- brm(
y ~ x1 + x2,
data = df,
family = bernoulli(link = "logit")
)
# Poisson regression
fit_pois <- brm(
count ~ x1 + x2 + offset(log(exposure)),
data = df,
family = poisson()
)
# View default priors
get_prior(y ~ x1 + x2, data = df, family = gaussian())
# Set custom priors
custom_priors <- c(
prior(normal(0, 10), class = "Intercept"),
prior(normal(0, 2), class = "b"), # All regression coefficients
prior(normal(0, 1), class = "b", coef = "x1"), # Specific coefficient
prior(exponential(1), class = "sigma") # Error SD
)
fit <- brm(
y ~ x1 + x2,
data = df,
family = gaussian(),
prior = custom_priors,
seed = 123
)
# Sample from prior only
fit_prior <- brm(
y ~ x1 + x2,
data = df,
family = gaussian(),
prior = custom_priors,
sample_prior = "only", # Prior predictive
seed = 123
)
# Visualize prior predictions
pp_check(fit_prior, type = "dens_overlay", ndraws = 100)
# Random intercepts
fit_mixed <- brm(
y ~ x1 + x2 + (1 | group),
data = df,
family = gaussian()
)
# Random slopes
fit_mixed <- brm(
y ~ x1 + x2 + (1 + x1 | group),
data = df,
family = gaussian()
)
# Crossed random effects
fit_mixed <- brm(
y ~ x1 + (1 | subject) + (1 | item),
data = df,
family = gaussian()
)
fit <- brm(
y ~ x1 + x2,
data = df,
family = gaussian(),
chains = 4,
iter = 4000,
warmup = 2000,
cores = 4,
seed = 123,
control = list(
adapt_delta = 0.95, # Higher for problematic posteriors
max_treedepth = 15
)
)
library(rstanarm)
# Linear regression
fit <- stan_glm(
y ~ x1 + x2,
data = df,
family = gaussian(),
prior = normal(0, 2.5),
prior_intercept = normal(0, 10),
seed = 123
)
# Mixed effects
fit_mixed <- stan_lmer(
y ~ x1 + x2 + (1 | group),
data = df,
seed = 123
)
# Generalized linear mixed
fit_glmer <- stan_glmer(
y ~ x1 + x2 + (1 | group),
data = df,
family = binomial(),
seed = 123
)
# Model summary
summary(fit)
# Posterior draws
posterior <- as_draws_df(fit)
# Posterior summary
posterior_summary(fit)
# Fixed effects
fixef(fit)
# Random effects
ranef(fit)
# Credible intervals
posterior_interval(fit, prob = 0.95)
# Probability statements
hypothesis(fit, "x1 > 0")
hypothesis(fit, "x1 > x2")
hypothesis(fit, "x1 + x2 > 0")
# Multiple hypotheses
hypothesis(fit, c("x1 > 0", "x2 > 0", "x1 > x2"))
library(bayesplot)
# Density overlay
pp_check(fit, type = "dens_overlay", ndraws = 50)
# Histogram
pp_check(fit, type = "hist", ndraws = 8)
# Error scatter
pp_check(fit, type = "error_scatter_avg")
# Intervals
pp_check(fit, type = "intervals")
# Stat comparison
pp_check(fit, type = "stat", stat = "mean")
pp_check(fit, type = "stat_2d", stat = c("mean", "sd"))
library(bayesplot)
# Trace plots
mcmc_trace(fit)
# Rhat
rhat(fit)
mcmc_rhat(rhat(fit))
# Effective sample size
neff_ratio(fit)
mcmc_neff(neff_ratio(fit))
# Pairs plot (divergences)
mcmc_pairs(fit, pars = c("b_x1", "b_x2", "sigma"))
# Energy
mcmc_nuts_energy(nuts_params(fit))
# LOO-CV
loo_fit1 <- loo(fit1)
loo_fit2 <- loo(fit2)
# Compare models
loo_compare(loo_fit1, loo_fit2)
# Pareto k diagnostics
plot(loo_fit1)
# WAIC
waic_fit1 <- waic(fit1)
waic_fit2 <- waic(fit2)
# Compare
loo_compare(waic_fit1, waic_fit2)
library(bridgesampling)
# Compute marginal likelihood
bridge_fit1 <- bridge_sampler(fit1)
bridge_fit2 <- bridge_sampler(fit2)
# Bayes factor
bayes_factor(bridge_fit1, bridge_fit2)
library(loo)
# Model weights based on LOO
model_weights <- loo_model_weights(
list(fit1, fit2, fit3),
method = "stacking"
)
# Expected values (fitted)
fitted(fit, newdata = new_data)
# Predictions with uncertainty
predict(fit, newdata = new_data)
# Full posterior predictive draws
pp_draws <- posterior_predict(fit, newdata = new_data)
# Conditional effects
conditional_effects(fit)
# Specific effects
conditional_effects(fit, effects = "x1")
# Interaction effects
conditional_effects(fit, effects = "x1:x2")
# Plot with data
plot(conditional_effects(fit, effects = "x1"), points = TRUE)
library(emmeans)
# Estimated marginal means
emmeans(fit, ~ treatment)
# Contrasts
emmeans(fit, pairwise ~ treatment)
# Non-linear formula
fit_nl <- brm(
bf(y ~ a * exp(-b * x), a ~ 1, b ~ 1, nl = TRUE),
data = df,
prior = c(
prior(normal(10, 5), nlpar = "a"),
prior(normal(0.5, 0.2), nlpar = "b")
),
family = gaussian()
)
# Model mean and variance
fit_dist <- brm(
bf(y ~ x1 + x2, sigma ~ x1), # Heteroscedasticity
data = df,
family = gaussian()
)
fit_ordinal <- brm(
rating ~ x1 + x2,
data = df,
family = cumulative("logit")
)
fit_zi <- brm(
count ~ x1 + x2,
data = df,
family = zero_inflated_poisson()
)
# With predictors for zero-inflation
fit_zi <- brm(
bf(count ~ x1 + x2, zi ~ x3),
data = df,
family = zero_inflated_poisson()
)
# Cox model (brms)
fit_surv <- brm(
time | cens(censored) ~ x1 + x2,
data = df,
family = cox()
)
# Parametric survival
fit_weibull <- brm(
time | cens(censored) ~ x1 + x2,
data = df,
family = weibull()
)
library(brms)
library(bayesplot)
# 1. Prior predictive check
fit_prior <- brm(
y ~ x1 + x2,
data = df,
family = gaussian(),
prior = c(
prior(normal(0, 10), class = "Intercept"),
prior(normal(0, 2), class = "b"),
prior(exponential(1), class = "sigma")
),
sample_prior = "only",
seed = 123
)
pp_check(fit_prior, ndraws = 50)
# 2. Fit model
fit <- update(fit_prior, sample_prior = "no")
# 3. Check convergence
summary(fit)
mcmc_trace(fit)
# 4. Posterior predictive check
pp_check(fit, ndraws = 50)
# 5. Model comparison
fit_alt <- brm(y ~ x1, data = df, family = gaussian())
loo_compare(loo(fit), loo(fit_alt))
# 6. Inference
fixef(fit)
hypothesis(fit, "x1 > 0")
# 7. Predictions
conditional_effects(fit)
| Package | Purpose |
|---|---|
| brms | General Bayesian regression |
| rstanarm | Applied regression models |
| bayesplot | MCMC visualization |
| loo | Model comparison |
| bridgesampling | Bayes factors |
| tidybayes | Tidy Bayesian analysis |
| posterior | Posterior manipulation |
This skill should be used when the user asks about libraries, frameworks, API references, or needs code examples. Activates for setup questions, code generation involving libraries, or mentions of specific frameworks like React, Vue, Next.js, Prisma, Supabase, etc.