MCMC diagnostics for Bayesian models including convergence assessment, effective sample size, divergences, and posterior predictive checks.
/plugin marketplace add choxos/BiostatAgent/plugin install bayesian-modeling@biostat-agentThis skill inherits all available tools. When active, it can use any tool Claude has access to.
| Metric | Good Value | Concern |
|---|---|---|
| Rhat | < 1.01 | > 1.1 indicates non-convergence |
| ESS bulk | > 400 | < 100 unreliable estimates |
| ESS tail | > 400 | < 100 unreliable intervals |
| Divergences | 0 | Any indicates geometry issues |
| Max treedepth | 0 hits | Hitting limit = slow exploration |
library(cmdstanr)
fit <- mod$sample(data = stan_data, ...)
# Quick check
fit$cmdstan_diagnose()
# Summary with diagnostics
fit$summary()
# Detailed diagnostics
fit$diagnostic_summary()
# Extract specific metrics
draws <- fit$draws()
rhat <- posterior::rhat(draws)
ess_bulk <- posterior::ess_bulk(draws)
ess_tail <- posterior::ess_tail(draws)
# Divergences
np <- fit$sampler_diagnostics()
sum(np[,,"divergent__"])
# Treedepth
sum(np[,,"treedepth__"] == 10) # Default max
library(R2jags)
library(coda)
fit <- jags(...)
# Summary (includes Rhat, n.eff)
print(fit)
fit$BUGSoutput$summary
# Rhat
max(fit$BUGSoutput$summary[,"Rhat"])
# Effective sample size
min(fit$BUGSoutput$summary[,"n.eff"])
# Convert to coda
mcmc_obj <- as.mcmc(fit)
# Gelman-Rubin
gelman.diag(mcmc_obj)
# Autocorrelation
autocorr.diag(mcmc_obj)
autocorr.plot(mcmc_obj)
# Geweke diagnostic
geweke.diag(mcmc_obj)
# Stan (bayesplot)
library(bayesplot)
mcmc_trace(fit$draws(), pars = c("mu", "sigma"))
# JAGS
traceplot(fit)
# Should be uniform if chains mixed well
mcmc_rank_hist(fit$draws(), pars = "mu")
mcmc_pairs(fit$draws(), pars = c("mu", "sigma", "tau"))
# Identify divergent transitions
np <- nuts_params(fit)
divergent <- np[np$Parameter == "divergent__" & np$Value == 1, ]
# Pairs plot highlighting divergences
mcmc_pairs(fit$draws(), np = np,
pars = c("mu", "tau"),
off_diag_args = list(size = 0.5))
# Common fixes:
# 1. Increase adapt_delta
fit <- mod$sample(data = stan_data, adapt_delta = 0.95)
# 2. Use non-centered parameterization
# 3. Reparameterize (use Cholesky for covariances)
# Rule of thumb: ESS > 10 * num_chains for reliable Rhat
# ESS > 100 for reasonable posterior estimates
# ESS > 400 for reliable tail quantiles
# If low ESS:
# 1. Run longer chains
# 2. Thin the samples (last resort)
# 3. Improve parameterization
# 4. Use more informative priors
generated quantities {
array[N] real y_rep;
for (n in 1:N)
y_rep[n] = normal_rng(mu[n], sigma);
}
library(bayesplot)
# Density overlay
y_rep <- fit$draws("y_rep", format = "matrix")
ppc_dens_overlay(y, y_rep[1:50, ])
# Intervals
ppc_intervals(y, y_rep)
# Statistics
ppc_stat(y, y_rep, stat = "mean")
ppc_stat(y, y_rep, stat = "sd")
ppc_stat(y, y_rep, stat = function(x) max(x) - min(x))
library(loo)
# Add log_lik to generated quantities
loo1 <- fit1$loo()
loo2 <- fit2$loo()
# Compare
loo_compare(loo1, loo2)
# Check Pareto k diagnostics
plot(loo1)
waic1 <- waic(log_lik1)
waic2 <- waic(log_lik2)
loo_compare(waic1, waic2)
fit$BUGSoutput$DIC
fit$BUGSoutput$pD # Effective number of parameters
| Problem | Symptoms | Solutions |
|---|---|---|
| Non-convergence | Rhat > 1.1 | Longer warmup, better inits |
| Divergences | divergent__ > 0 | Non-centered param, higher adapt_delta |
| Low ESS | ESS < 100 | Longer chains, better param |
| Slow mixing | High autocorrelation | Reparameterize, QR decomposition |
| Hitting max_treedepth | treedepth == max | Increase max_treedepth |
check_diagnostics <- function(fit) {
cat("=== MCMC Diagnostics ===\n")
# For Stan
if (inherits(fit, "CmdStanMCMC")) {
summ <- fit$summary()
diag <- fit$diagnostic_summary()
cat("Max Rhat:", max(summ$rhat, na.rm=TRUE),
ifelse(max(summ$rhat, na.rm=TRUE) < 1.01, "✓", "✗"), "\n")
cat("Min ESS bulk:", min(summ$ess_bulk, na.rm=TRUE),
ifelse(min(summ$ess_bulk, na.rm=TRUE) > 400, "✓", "✗"), "\n")
cat("Divergences:", sum(diag$num_divergent),
ifelse(sum(diag$num_divergent) == 0, "✓", "✗"), "\n")
cat("Max treedepth:", sum(diag$num_max_treedepth),
ifelse(sum(diag$num_max_treedepth) == 0, "✓", "✗"), "\n")
}
# For JAGS
if (inherits(fit, "rjags")) {
summ <- fit$BUGSoutput$summary
cat("Max Rhat:", max(summ[,"Rhat"], na.rm=TRUE),
ifelse(max(summ[,"Rhat"], na.rm=TRUE) < 1.1, "✓", "✗"), "\n")
cat("Min n.eff:", min(summ[,"n.eff"], na.rm=TRUE),
ifelse(min(summ[,"n.eff"], na.rm=TRUE) > 100, "✓", "✗"), "\n")
cat("DIC:", fit$BUGSoutput$DIC, "\n")
}
}
This skill should be used when the user asks to "create an agent", "add an agent", "write a subagent", "agent frontmatter", "when to use description", "agent examples", "agent tools", "agent colors", "autonomous agent", or needs guidance on agent structure, system prompts, triggering conditions, or agent development best practices for Claude Code plugins.
This skill should be used when the user asks to "create a slash command", "add a command", "write a custom command", "define command arguments", "use command frontmatter", "organize commands", "create command with file references", "interactive command", "use AskUserQuestion in command", or needs guidance on slash command structure, YAML frontmatter fields, dynamic arguments, bash execution in commands, user interaction patterns, or command development best practices for Claude Code.
This skill should be used when the user asks to "create a hook", "add a PreToolUse/PostToolUse/Stop hook", "validate tool use", "implement prompt-based hooks", "use ${CLAUDE_PLUGIN_ROOT}", "set up event-driven automation", "block dangerous commands", or mentions hook events (PreToolUse, PostToolUse, Stop, SubagentStop, SessionStart, SessionEnd, UserPromptSubmit, PreCompact, Notification). Provides comprehensive guidance for creating and implementing Claude Code plugin hooks with focus on advanced prompt-based hooks API.