Bayesian meta-analysis models including fixed effects, random effects, and network meta-analysis with Stan and JAGS implementations.
/plugin marketplace add choxos/BiostatAgent/plugin install bayesian-modeling@biostat-agentThis skill inherits all available tools. When active, it can use any tool Claude has access to.
data {
int<lower=0> K; // Number of studies
vector[K] y; // Effect estimates
vector<lower=0>[K] se; // Standard errors
}
parameters {
real theta; // Common effect
}
model {
theta ~ normal(0, 10);
y ~ normal(theta, se);
}
model {
for (i in 1:K) {
y[i] ~ dnorm(theta, prec[i])
prec[i] <- pow(se[i], -2)
}
theta ~ dnorm(0, 0.0001)
}
data {
int<lower=0> K;
vector[K] y;
vector<lower=0>[K] se;
}
parameters {
real mu; // Overall mean
real<lower=0> tau; // Between-study SD
vector[K] eta; // Study effects (standardized)
}
transformed parameters {
vector[K] theta = mu + tau * eta;
}
model {
// Priors
mu ~ normal(0, 10);
tau ~ cauchy(0, 0.5); // Half-Cauchy
eta ~ std_normal();
// Likelihood
y ~ normal(theta, se);
}
generated quantities {
real theta_new = normal_rng(mu, tau); // Predictive
real I2 = square(tau) / (square(tau) + mean(square(se)));
}
model {
for (i in 1:K) {
y[i] ~ dnorm(theta[i], prec[i])
prec[i] <- pow(se[i], -2)
theta[i] ~ dnorm(mu, tau.theta)
}
mu ~ dnorm(0, 0.0001)
tau.theta <- pow(sigma.theta, -2)
sigma.theta ~ dunif(0, 10)
# Heterogeneity
tau2 <- pow(sigma.theta, 2)
}
data {
int<lower=0> K;
array[K] int<lower=0> r1; // Events in treatment
array[K] int<lower=0> n1; // Total in treatment
array[K] int<lower=0> r2; // Events in control
array[K] int<lower=0> n2; // Total in control
}
parameters {
real d; // Overall log-OR
real<lower=0> tau;
vector[K] delta; // Study-specific log-OR
vector[K] mu; // Baseline log-odds
}
model {
d ~ normal(0, 10);
tau ~ cauchy(0, 0.5);
delta ~ normal(d, tau);
mu ~ normal(0, 10);
r2 ~ binomial_logit(n2, mu);
r1 ~ binomial_logit(n1, mu + delta);
}
generated quantities {
real OR = exp(d);
}
data {
int<lower=0> K; // Number of studies
int<lower=0> T; // Number of treatments
array[K] int<lower=1> t1; // Treatment 1 index
array[K] int<lower=1> t2; // Treatment 2 index
vector[K] y; // Effect estimate
vector<lower=0>[K] se;
}
parameters {
vector[T-1] d_raw; // Basic parameters (vs reference)
real<lower=0> tau;
vector[K] delta;
}
transformed parameters {
vector[T] d;
d[1] = 0; // Reference treatment
d[2:T] = d_raw;
}
model {
d_raw ~ normal(0, 10);
tau ~ cauchy(0, 0.5);
for (k in 1:K) {
delta[k] ~ normal(d[t2[k]] - d[t1[k]], tau);
y[k] ~ normal(delta[k], se[k]);
}
}
generated quantities {
// Treatment rankings
array[T] int rank;
{
array[T] int order = sort_indices_desc(d);
for (t in 1:T) rank[order[t]] = t;
}
}
data {
int<lower=0> K;
vector[K] y;
vector<lower=0>[K] se;
vector<lower=0,upper=1>[K] published; // Publication indicator
}
parameters {
real mu;
real<lower=0> tau;
vector[K] theta;
real<lower=0> alpha; // Selection severity
}
model {
theta ~ normal(mu, tau);
y ~ normal(theta, se);
// Selection model: higher z-scores more likely published
for (k in 1:K) {
real z = y[k] / se[k];
published[k] ~ bernoulli(Phi(alpha * z));
}
}
generated quantities {
// Heterogeneity
real tau2 = square(tau);
real I2 = tau2 / (tau2 + mean(square(se)));
// Prediction interval
real pred_lower = mu - 1.96 * tau;
real pred_upper = mu + 1.96 * tau;
// Probability effect > 0
real prob_positive = 1 - normal_cdf(0 | mu, tau);
}
| Context | tau prior |
|---|---|
| Pharmacological | half_normal(0, 0.5) |
| Medical devices | half_normal(0, 1) |
| Behavioral | half_cauchy(0, 1) |
| Default | half_cauchy(0, 0.5) |
This skill should be used when the user asks to "create an agent", "add an agent", "write a subagent", "agent frontmatter", "when to use description", "agent examples", "agent tools", "agent colors", "autonomous agent", or needs guidance on agent structure, system prompts, triggering conditions, or agent development best practices for Claude Code plugins.
This skill should be used when the user asks to "create a slash command", "add a command", "write a custom command", "define command arguments", "use command frontmatter", "organize commands", "create command with file references", "interactive command", "use AskUserQuestion in command", or needs guidance on slash command structure, YAML frontmatter fields, dynamic arguments, bash execution in commands, user interaction patterns, or command development best practices for Claude Code.
This skill should be used when the user asks to "create a hook", "add a PreToolUse/PostToolUse/Stop hook", "validate tool use", "implement prompt-based hooks", "use ${CLAUDE_PLUGIN_ROOT}", "set up event-driven automation", "block dangerous commands", or mentions hook events (PreToolUse, PostToolUse, Stop, SubagentStop, SessionStart, SessionEnd, UserPromptSubmit, PreCompact, Notification). Provides comprehensive guidance for creating and implementing Claude Code plugin hooks with focus on advanced prompt-based hooks API.