subject segmentation, VNGenerateForegroundInstanceMaskRequest, isolate object from hand, VisionKit subject lifting, image foreground detection, instance masks, class-agnostic segmentation, VNRecognizeTextRequest, OCR, VNDetectBarcodesRequest, DataScannerViewController, document scanning, RecognizeDocumentsRequest
/plugin marketplace add CharlesWiltgen/Axiom/plugin install axiom@axiom-marketplaceThis skill inherits all available tools. When active, it can use any tool Claude has access to.
Guides you through implementing computer vision: subject segmentation, hand/body pose detection, person detection, text recognition, barcode detection, document scanning, and combining Vision APIs to solve complex problems.
Use when you need to:
"How do I isolate a subject from the background?" "I need to detect hand gestures like pinch" "How can I get a bounding box around an object without including the hand holding it?" "Should I use VisionKit or Vision framework for subject lifting?" "How do I segment multiple people separately?" "I need to detect body poses for a fitness app" "How do I preserve HDR when compositing subjects on new backgrounds?" "How do I recognize text in an image?" "I need to scan QR codes from camera" "How do I extract data from a receipt?" "Should I use DataScannerViewController or Vision directly?" "How do I scan documents and correct perspective?" "I need to extract table data from a document"
Signs you're making this harder than it needs to be:
Before implementing any Vision feature:
What do you need to do?
┌─ Isolate subject(s) from background?
│ ├─ Need system UI + out-of-process → VisionKit
│ │ └─ ImageAnalysisInteraction (iOS/iPadOS)
│ │ └─ ImageAnalysisOverlayView (macOS)
│ ├─ Need custom pipeline / HDR / large images → Vision
│ │ └─ VNGenerateForegroundInstanceMaskRequest
│ └─ Need to EXCLUDE hands from object → Combine APIs
│ └─ Subject mask + Hand pose + custom masking (see Pattern 1)
│
├─ Segment people?
│ ├─ All people in one mask → VNGeneratePersonSegmentationRequest
│ └─ Separate mask per person (up to 4) → VNGeneratePersonInstanceMaskRequest
│
├─ Detect hand pose/gestures?
│ ├─ Just hand location → VNDetectHumanRectanglesRequest
│ └─ 21 hand landmarks → VNDetectHumanHandPoseRequest
│ └─ Gesture recognition → Hand pose + distance checks
│
├─ Detect body pose?
│ ├─ 2D normalized landmarks → VNDetectHumanBodyPoseRequest
│ ├─ 3D real-world coordinates → VNDetectHumanBodyPose3DRequest
│ └─ Action classification → Body pose + CreateML model
│
├─ Face detection?
│ ├─ Just bounding boxes → VNDetectFaceRectanglesRequest
│ └─ Detailed landmarks → VNDetectFaceLandmarksRequest
│
├─ Person detection (location only)?
│ └─ VNDetectHumanRectanglesRequest
│
├─ Recognize text in images?
│ ├─ Real-time from camera + need UI → DataScannerViewController (iOS 16+)
│ ├─ Processing captured image → VNRecognizeTextRequest
│ │ ├─ Need speed (real-time camera) → recognitionLevel = .fast
│ │ └─ Need accuracy (documents) → recognitionLevel = .accurate
│ └─ Need structured documents (iOS 26+) → RecognizeDocumentsRequest
│
├─ Detect barcodes/QR codes?
│ ├─ Real-time camera + need UI → DataScannerViewController (iOS 16+)
│ └─ Processing image → VNDetectBarcodesRequest
│
└─ Scan documents?
├─ Need built-in UI + perspective correction → VNDocumentCameraViewController
├─ Need structured data (tables, lists) → RecognizeDocumentsRequest (iOS 26+)
└─ Custom pipeline → VNDetectDocumentSegmentationRequest + perspective correction
NEVER run Vision on main thread:
let processingQueue = DispatchQueue(label: "com.yourapp.vision", qos: .userInitiated)
processingQueue.async {
do {
let request = VNGenerateForegroundInstanceMaskRequest()
let handler = VNImageRequestHandler(cgImage: image)
try handler.perform([request])
// Process observations...
DispatchQueue.main.async {
// Update UI
}
} catch {
// Handle error
}
}
| API | Minimum Version |
|---|---|
| Subject segmentation (instance masks) | iOS 17+ |
| VisionKit subject lifting | iOS 16+ |
| Hand pose | iOS 14+ |
| Body pose (2D) | iOS 14+ |
| Body pose (3D) | iOS 17+ |
| Person instance segmentation | iOS 17+ |
| VNRecognizeTextRequest (basic) | iOS 13+ |
| VNRecognizeTextRequest (accurate, multi-lang) | iOS 14+ |
| VNDetectBarcodesRequest | iOS 11+ |
| VNDetectBarcodesRequest (revision 2: Codabar, MicroQR) | iOS 15+ |
| VNDetectBarcodesRequest (revision 3: ML-based) | iOS 16+ |
| DataScannerViewController | iOS 16+ |
| VNDocumentCameraViewController | iOS 13+ |
| VNDetectDocumentSegmentationRequest | iOS 15+ |
| RecognizeDocumentsRequest | iOS 26+ |
User's original problem: Getting a bounding box around an object held in hand, without including the hand.
Root cause: VNGenerateForegroundInstanceMaskRequest is class-agnostic and treats hand+object as one subject.
Solution: Combine subject mask with hand pose to create exclusion mask.
// 1. Get subject instance mask
let subjectRequest = VNGenerateForegroundInstanceMaskRequest()
let handler = VNImageRequestHandler(cgImage: sourceImage)
try handler.perform([subjectRequest])
guard let subjectObservation = subjectRequest.results?.first as? VNInstanceMaskObservation else {
fatalError("No subject detected")
}
// 2. Get hand pose landmarks
let handRequest = VNDetectHumanHandPoseRequest()
handRequest.maximumHandCount = 2
try handler.perform([handRequest])
guard let handObservation = handRequest.results?.first as? VNHumanHandPoseObservation else {
// No hand detected - use full subject mask
let mask = try subjectObservation.createScaledMask(
for: subjectObservation.allInstances,
croppedToInstancesContent: false
)
return mask
}
// 3. Create hand exclusion region from landmarks
let handPoints = try handObservation.recognizedPoints(.all)
let handBounds = calculateConvexHull(from: handPoints) // Your implementation
// 4. Subtract hand region from subject mask using CoreImage
let subjectMask = try subjectObservation.createScaledMask(
for: subjectObservation.allInstances,
croppedToInstancesContent: false
)
let subjectCIMask = CIImage(cvPixelBuffer: subjectMask)
let handMask = createMaskFromRegion(handBounds, size: sourceImage.size)
let finalMask = subtractMasks(handMask: handMask, from: subjectCIMask)
// 5. Calculate bounding box from final mask
let objectBounds = calculateBoundingBox(from: finalMask)
Helper: Convex Hull
func calculateConvexHull(from points: [VNRecognizedPointKey: VNRecognizedPoint]) -> CGRect {
// Get high-confidence points
let validPoints = points.values.filter { $0.confidence > 0.5 }
guard !validPoints.isEmpty else { return .zero }
// Simple bounding rect (for more accuracy, use actual convex hull algorithm)
let xs = validPoints.map { $0.location.x }
let ys = validPoints.map { $0.location.y }
let minX = xs.min()!
let maxX = xs.max()!
let minY = ys.min()!
let maxY = ys.max()!
return CGRect(
x: minX,
y: minY,
width: maxX - minX,
height: maxY - minY
)
}
Cost: 2-5 hours initial implementation, 30 min ongoing maintenance
Use case: Add system-like subject lifting UI with minimal code.
// iOS
let interaction = ImageAnalysisInteraction()
interaction.preferredInteractionTypes = .imageSubject
imageView.addInteraction(interaction)
// macOS
let overlayView = ImageAnalysisOverlayView()
overlayView.preferredInteractionTypes = .imageSubject
nsView.addSubview(overlayView)
When to use:
Cost: 15 min implementation, 5 min ongoing
Use case: Need subject images/bounds without UI interaction.
let analyzer = ImageAnalyzer()
let configuration = ImageAnalyzer.Configuration([.text, .visualLookUp])
let analysis = try await analyzer.analyze(sourceImage, configuration: configuration)
// Get all subjects
for subject in analysis.subjects {
let subjectImage = subject.image
let subjectBounds = subject.bounds
// Process subject...
}
// Tap-based lookup
if let subject = try await analysis.subject(at: tapPoint) {
let compositeImage = try await analysis.image(for: [subject])
}
Cost: 30 min implementation, 10 min ongoing
Use case: HDR preservation, large images, custom compositing.
let request = VNGenerateForegroundInstanceMaskRequest()
let handler = VNImageRequestHandler(cgImage: sourceImage)
try handler.perform([request])
guard let observation = request.results?.first as? VNInstanceMaskObservation else {
return
}
// Get soft segmentation mask
let mask = try observation.createScaledMask(
for: observation.allInstances,
croppedToInstancesContent: false // Full resolution for compositing
)
// Use with CoreImage for HDR preservation
let filter = CIFilter(name: "CIBlendWithMask")!
filter.setValue(CIImage(cgImage: sourceImage), forKey: kCIInputImageKey)
filter.setValue(CIImage(cvPixelBuffer: mask), forKey: kCIInputMaskImageKey)
filter.setValue(newBackground, forKey: kCIInputBackgroundImageKey)
let compositedImage = filter.outputImage
Cost: 1 hour implementation, 15 min ongoing
Use case: User taps to select which subject/person to lift.
// Get instance at tap point
let instance = observation.instanceAtPoint(tapPoint)
if instance == 0 {
// Background tapped - select all instances
let mask = try observation.createScaledMask(
for: observation.allInstances,
croppedToInstancesContent: false
)
} else {
// Specific instance tapped
let mask = try observation.createScaledMask(
for: IndexSet(integer: instance),
croppedToInstancesContent: true
)
}
Alternative: Raw pixel buffer access
let instanceMask = observation.instanceMask
CVPixelBufferLockBaseAddress(instanceMask, .readOnly)
defer { CVPixelBufferUnlockBaseAddress(instanceMask, .readOnly) }
let baseAddress = CVPixelBufferGetBaseAddress(instanceMask)
let bytesPerRow = CVPixelBufferGetBytesPerRow(instanceMask)
// Convert normalized tap to pixel coordinates
let pixelPoint = VNImagePointForNormalizedPoint(
tapPoint,
width: imageWidth,
height: imageHeight
)
let offset = Int(pixelPoint.y) * bytesPerRow + Int(pixelPoint.x)
let label = UnsafeRawPointer(baseAddress!).load(
fromByteOffset: offset,
as: UInt8.self
)
Cost: 45 min implementation, 10 min ongoing
Use case: Detect pinch gesture for custom camera trigger or UI control.
let request = VNDetectHumanHandPoseRequest()
request.maximumHandCount = 1
try handler.perform([request])
guard let observation = request.results?.first as? VNHumanHandPoseObservation else {
return
}
let thumbTip = try observation.recognizedPoint(.thumbTip)
let indexTip = try observation.recognizedPoint(.indexTip)
// Check confidence
guard thumbTip.confidence > 0.5, indexTip.confidence > 0.5 else {
return
}
// Calculate distance (normalized coordinates)
let dx = thumbTip.location.x - indexTip.location.x
let dy = thumbTip.location.y - indexTip.location.y
let distance = sqrt(dx * dx + dy * dy)
let isPinching = distance < 0.05 // Adjust threshold
// State machine for evidence accumulation
if isPinching {
pinchFrameCount += 1
if pinchFrameCount >= 3 {
state = .pinched
}
} else {
pinchFrameCount = max(0, pinchFrameCount - 1)
if pinchFrameCount == 0 {
state = .apart
}
}
Cost: 2 hours implementation, 20 min ongoing
Use case: Apply different effects to each person or count people.
let request = VNGeneratePersonInstanceMaskRequest()
try handler.perform([request])
guard let observation = request.results?.first as? VNInstanceMaskObservation else {
return
}
let peopleCount = observation.allInstances.count // Up to 4
for personIndex in observation.allInstances {
let personMask = try observation.createScaledMask(
for: IndexSet(integer: personIndex),
croppedToInstancesContent: false
)
// Apply effect to this person only
applyEffect(to: personMask, personIndex: personIndex)
}
Crowded scenes (>4 people):
// Count faces to detect crowding
let faceRequest = VNDetectFaceRectanglesRequest()
try handler.perform([faceRequest])
let faceCount = faceRequest.results?.count ?? 0
if faceCount > 4 {
// Fallback: Use single mask for all people
let singleMaskRequest = VNGeneratePersonSegmentationRequest()
try handler.perform([singleMaskRequest])
}
Cost: 1.5 hours implementation, 15 min ongoing
Use case: Fitness app that recognizes exercises (jumping jacks, squats, etc.)
// 1. Collect body pose observations
var poseObservations: [VNHumanBodyPoseObservation] = []
let request = VNDetectHumanBodyPoseRequest()
try handler.perform([request])
if let observation = request.results?.first as? VNHumanBodyPoseObservation {
poseObservations.append(observation)
}
// 2. When you have 60 frames of poses, prepare for CreateML model
if poseObservations.count == 60 {
var multiArray = try MLMultiArray(
shape: [60, 18, 3], // 60 frames, 18 joints, (x, y, confidence)
dataType: .double
)
for (frameIndex, observation) in poseObservations.enumerated() {
let allPoints = try observation.recognizedPoints(.all)
for (jointIndex, (_, point)) in allPoints.enumerated() {
multiArray[[frameIndex, jointIndex, 0] as [NSNumber]] = NSNumber(value: point.location.x)
multiArray[[frameIndex, jointIndex, 1] as [NSNumber]] = NSNumber(value: point.location.y)
multiArray[[frameIndex, jointIndex, 2] as [NSNumber]] = NSNumber(value: point.confidence)
}
}
// 3. Run inference with CreateML model
let input = YourActionClassifierInput(poses: multiArray)
let output = try actionClassifier.prediction(input: input)
let action = output.label // "jumping_jacks", "squats", etc.
}
Cost: 3-4 hours implementation, 1 hour ongoing
Use case: Extract text from images, receipts, signs, documents.
let request = VNRecognizeTextRequest()
request.recognitionLevel = .accurate // Or .fast for real-time
request.recognitionLanguages = ["en-US"] // Specify known languages
request.usesLanguageCorrection = true // Helps accuracy
let handler = VNImageRequestHandler(cgImage: image)
try handler.perform([request])
guard let observations = request.results as? [VNRecognizedTextObservation] else {
return
}
for observation in observations {
// Get top candidate (most likely)
guard let candidate = observation.topCandidates(1).first else { continue }
let text = candidate.string
let confidence = candidate.confidence
// Get bounding box for specific substring
if let range = text.range(of: searchTerm) {
if let boundingBox = try? candidate.boundingBox(for: range) {
// Use for highlighting
}
}
}
Fast vs Accurate:
Language tips:
automaticallyDetectsLanguage = true only when language unknownsupportedRecognitionLanguages for current revisionCost: 30 min basic implementation, 2 hours with language handling
Use case: Scan product barcodes, QR codes, healthcare codes.
let request = VNDetectBarcodesRequest()
request.revision = VNDetectBarcodesRequestRevision3 // ML-based, iOS 16+
request.symbologies = [.qr, .ean13] // Specify only what you need!
let handler = VNImageRequestHandler(cgImage: image)
try handler.perform([request])
guard let observations = request.results as? [VNBarcodeObservation] else {
return
}
for barcode in observations {
let payload = barcode.payloadStringValue // Decoded content
let symbology = barcode.symbology // Type of barcode
let bounds = barcode.boundingBox // Location (normalized)
print("Found \(symbology): \(payload ?? "no string")")
}
Performance tip: Specifying fewer symbologies = faster scanning
Revision differences:
Cost: 15 min implementation
Use case: Camera-based text/barcode scanning with built-in UI (iOS 16+).
import VisionKit
// Check support
guard DataScannerViewController.isSupported,
DataScannerViewController.isAvailable else {
// Not supported or camera access denied
return
}
// Configure what to scan
let recognizedDataTypes: Set<DataScannerViewController.RecognizedDataType> = [
.barcode(symbologies: [.qr]),
.text(textContentType: .URL) // Or nil for all text
]
// Create and present
let scanner = DataScannerViewController(
recognizedDataTypes: recognizedDataTypes,
qualityLevel: .balanced, // Or .fast, .accurate
recognizesMultipleItems: false, // Center-most if false
isHighFrameRateTrackingEnabled: true, // For smooth highlights
isPinchToZoomEnabled: true,
isGuidanceEnabled: true,
isHighlightingEnabled: true
)
scanner.delegate = self
present(scanner, animated: true) {
try? scanner.startScanning()
}
Delegate methods:
func dataScanner(_ scanner: DataScannerViewController,
didTapOn item: RecognizedItem) {
switch item {
case .text(let text):
print("Tapped text: \(text.transcript)")
case .barcode(let barcode):
print("Tapped barcode: \(barcode.payloadStringValue ?? "")")
@unknown default: break
}
}
// For custom highlights
func dataScanner(_ scanner: DataScannerViewController,
didAdd addedItems: [RecognizedItem],
allItems: [RecognizedItem]) {
for item in addedItems {
let highlight = createHighlight(for: item)
scanner.overlayContainerView.addSubview(highlight)
}
}
Async stream alternative:
for await items in scanner.recognizedItems {
// Process current items
}
Cost: 45 min implementation with custom highlights
Use case: Scan paper documents with automatic edge detection and perspective correction.
import VisionKit
let documentCamera = VNDocumentCameraViewController()
documentCamera.delegate = self
present(documentCamera, animated: true)
// In delegate
func documentCameraViewController(_ controller: VNDocumentCameraViewController,
didFinishWith scan: VNDocumentCameraScan) {
controller.dismiss(animated: true)
// Process each page
for pageIndex in 0..<scan.pageCount {
let image = scan.imageOfPage(at: pageIndex)
// Now run text recognition on the corrected image
let handler = VNImageRequestHandler(cgImage: image.cgImage!)
let textRequest = VNRecognizeTextRequest()
try? handler.perform([textRequest])
}
}
Cost: 30 min implementation
Use case: Detect document edges programmatically for custom camera UI.
let request = VNDetectDocumentSegmentationRequest()
let handler = VNImageRequestHandler(ciImage: inputImage)
try handler.perform([request])
guard let observation = request.results?.first,
let document = observation as? VNRectangleObservation else {
return
}
// Get corner points (normalized coordinates)
let topLeft = document.topLeft
let topRight = document.topRight
let bottomLeft = document.bottomLeft
let bottomRight = document.bottomRight
// Apply perspective correction with CoreImage
let correctedImage = inputImage
.cropped(to: document.boundingBox.scaled(to: imageSize))
.applyingFilter("CIPerspectiveCorrection", parameters: [
"inputTopLeft": CIVector(cgPoint: topLeft.scaled(to: imageSize)),
"inputTopRight": CIVector(cgPoint: topRight.scaled(to: imageSize)),
"inputBottomLeft": CIVector(cgPoint: bottomLeft.scaled(to: imageSize)),
"inputBottomRight": CIVector(cgPoint: bottomRight.scaled(to: imageSize))
])
VNDetectDocumentSegmentationRequest vs VNDetectRectanglesRequest:
Cost: 1-2 hours implementation
Use case: Extract tables, lists, paragraphs with semantic understanding.
// iOS 26+
let request = RecognizeDocumentsRequest()
let observations = try await request.perform(on: imageData)
guard let document = observations.first?.document else {
return
}
// Extract tables
for table in document.tables {
for row in table.rows {
for cell in row {
let text = cell.content.text.transcript
print("Cell: \(text)")
}
}
}
// Get detected data (emails, phones, URLs, dates)
let allDetectedData = document.text.detectedData
for data in allDetectedData {
switch data.match.details {
case .emailAddress(let email):
print("Email: \(email.emailAddress)")
case .phoneNumber(let phone):
print("Phone: \(phone.phoneNumber)")
case .link(let url):
print("URL: \(url)")
default: break
}
}
Document hierarchy:
Cost: 1 hour implementation
Use case: Scan phone numbers from camera like barcode scanner (from WWDC 2019).
// 1. Use region of interest to guide user
let textRequest = VNRecognizeTextRequest { request, error in
guard let observations = request.results as? [VNRecognizedTextObservation] else { return }
for observation in observations {
guard let candidate = observation.topCandidates(1).first else { continue }
// Use domain knowledge to filter
if let phoneNumber = self.extractPhoneNumber(from: candidate.string) {
self.stringTracker.add(phoneNumber)
}
}
// Build evidence over frames
if let stableNumber = self.stringTracker.getStableString(threshold: 10) {
self.foundPhoneNumber(stableNumber)
}
}
textRequest.recognitionLevel = .fast // Real-time
textRequest.usesLanguageCorrection = false // Codes, not natural text
textRequest.regionOfInterest = guidanceBox // Crop to user's focus area
// 2. String tracker for stability
class StringTracker {
private var seenStrings: [String: Int] = [:]
func add(_ string: String) {
seenStrings[string, default: 0] += 1
}
func getStableString(threshold: Int) -> String? {
seenStrings.first { $0.value >= threshold }?.key
}
}
Key techniques from WWDC 2019:
.fast recognition level for real-timeCost: 2 hours implementation
Wrong:
let request = VNGenerateForegroundInstanceMaskRequest()
let handler = VNImageRequestHandler(cgImage: image)
try handler.perform([request]) // Blocks UI!
Right:
DispatchQueue.global(qos: .userInitiated).async {
let request = VNGenerateForegroundInstanceMaskRequest()
let handler = VNImageRequestHandler(cgImage: image)
try handler.perform([request])
DispatchQueue.main.async {
// Update UI
}
}
Why it matters: Vision is resource-intensive. Blocking main thread freezes UI.
Wrong:
let thumbTip = try observation.recognizedPoint(.thumbTip)
let location = thumbTip.location // May be unreliable!
Right:
let thumbTip = try observation.recognizedPoint(.thumbTip)
guard thumbTip.confidence > 0.5 else {
// Low confidence - landmark unreliable
return
}
let location = thumbTip.location
Why it matters: Low confidence points are inaccurate (occlusion, blur, edge of frame).
Wrong (mixing coordinate systems):
// Vision uses lower-left origin
let visionPoint = recognizedPoint.location // (0, 0) = bottom-left
// UIKit uses top-left origin
let uiPoint = CGPoint(x: axiom-visionPoint.x, y: axiom-visionPoint.y) // WRONG!
Right:
let visionPoint = recognizedPoint.location
// Convert to UIKit coordinates
let uiPoint = CGPoint(
x: axiom-visionPoint.x * imageWidth,
y: (1 - visionPoint.y) * imageHeight // Flip Y axis
)
Why it matters: Mismatched origins cause UI overlays to appear in wrong positions.
Wrong:
let request = VNDetectHumanHandPoseRequest()
request.maximumHandCount = 10 // "Just in case"
Right:
let request = VNDetectHumanHandPoseRequest()
request.maximumHandCount = 2 // Only compute what you need
Why it matters: Performance scales with maximumHandCount. Pose computed for all detected hands ≤ max.
Wrong (if you don't need AR):
// Requires AR session just for body pose
let arSession = ARBodyTrackingConfiguration()
Right:
// Vision works offline on still images
let request = VNDetectHumanBodyPoseRequest()
Why it matters: ARKit body pose requires rear camera, AR session, supported devices. Vision works everywhere (even offline).
Context: Product manager wants subject lifting "like in Photos app" by Friday. You're considering skipping background processing.
Pressure: "It's working on my iPhone 15 Pro, let's ship it."
Reality: Vision blocks UI on older devices. Users on iPhone 12 will experience frozen app.
Correct action:
Push-back template: "Subject lifting works, but it freezes the UI on older devices. I need 30 minutes to add background processing and prevent 1-star reviews."
Context: Designer wants to exclude hands from subject bounding box. Engineer suggests training custom CoreML model for specific object detection.
Pressure: "We need perfect bounds, let's train a model."
Reality: Training requires labeled dataset (weeks), ongoing maintenance, and still won't generalize to new objects. Built-in Vision APIs + hand pose solve it in 2-5 hours.
Correct action:
Push-back template: "Training a model takes weeks and only works for specific objects. I can combine Vision APIs to solve this in a few hours and it'll work for any object."
Context: You need instance masks but app supports iOS 15+.
Pressure: "Just use iOS 15 person segmentation and ship it."
Reality: VNGeneratePersonSegmentationRequest (iOS 15) returns single mask for all people. Doesn't solve multi-person use case.
Correct action:
@available to conditionally enable featuresPush-back template: "Person segmentation on iOS 15 combines all people into one mask. We can either require iOS 17 for the best experience, or disable multi-person features on older OS versions. Which do you prefer?"
Before shipping Vision features:
Performance:
maximumHandCount set to minimum needed valueAccuracy:
Coordinates:
Platform Support:
@available checks for iOS 17+ APIs (instance masks)Edge Cases:
CoreImage Integration (if applicable):
croppedToInstancesContent set appropriately (false for compositing)Text/Barcode Recognition (if applicable):
WWDC: 2019-234, 2021-10041, 2022-10024, 2022-10025, 2025-272, 2023-10176, 2023-111241, 2020-10653
Docs: /vision, /visionkit, /vision/vnrecognizetextrequest, /vision/vndetectbarcodesrequest
Skills: axiom-vision-ref, axiom-vision-diag
This skill should be used when the user asks to "create an agent", "add an agent", "write a subagent", "agent frontmatter", "when to use description", "agent examples", "agent tools", "agent colors", "autonomous agent", or needs guidance on agent structure, system prompts, triggering conditions, or agent development best practices for Claude Code plugins.
This skill should be used when the user asks to "create a slash command", "add a command", "write a custom command", "define command arguments", "use command frontmatter", "organize commands", "create command with file references", "interactive command", "use AskUserQuestion in command", or needs guidance on slash command structure, YAML frontmatter fields, dynamic arguments, bash execution in commands, user interaction patterns, or command development best practices for Claude Code.
This skill should be used when the user asks to "create a hook", "add a PreToolUse/PostToolUse/Stop hook", "validate tool use", "implement prompt-based hooks", "use ${CLAUDE_PLUGIN_ROOT}", "set up event-driven automation", "block dangerous commands", or mentions hook events (PreToolUse, PostToolUse, Stop, SubagentStop, SessionStart, SessionEnd, UserPromptSubmit, PreCompact, Notification). Provides comprehensive guidance for creating and implementing Claude Code plugin hooks with focus on advanced prompt-based hooks API.