Cross-model performance optimization and scaling configurations for autonomous agents
Applies model-specific performance profiles and scaling strategies when tasks are initialized or metrics deviate from baseline. Automatically adjusts timeouts, quality targets, and resource allocation for optimal execution across different LLM models.
/plugin marketplace add bejranonda/LLM-Autonomous-Agent-Plugin-for-Claude/plugin install bejranonda-autonomous-agent@bejranonda/LLM-Autonomous-Agent-Plugin-for-ClaudeThis skill inherits all available tools. When active, it can use any tool Claude has access to.
This skill provides performance scaling and optimization strategies for autonomous agents across different LLM models, ensuring optimal execution characteristics while maintaining quality standards.
{
"model": "claude-sonnet-4.5",
"base_performance": {
"execution_speed": "fast",
"reasoning_depth": "high",
"context_switching": "excellent",
"adaptability": "very_high"
},
"scaling_factors": {
"time_multiplier": 1.0,
"quality_target": 90,
"complexity_handling": 0.9,
"parallel_processing": 1.2
},
"optimization_strategies": [
"context_merging",
"predictive_delegation",
"pattern_weighting",
"adaptive_quality_thresholds"
]
}
{
"model": "claude-haiku-4.5",
"base_performance": {
"execution_speed": "very_fast",
"reasoning_depth": "medium",
"context_switching": "good",
"adaptability": "high"
},
"scaling_factors": {
"time_multiplier": 0.8,
"quality_target": 88,
"complexity_handling": 1.1,
"parallel_processing": 1.0
},
"optimization_strategies": [
"fast_execution",
"selective_processing",
"efficient_delegation",
"streamlined_quality_checks"
]
}
{
"model": "claude-opus-4.1",
"base_performance": {
"execution_speed": "very_fast",
"reasoning_depth": "very_high",
"context_switching": "excellent",
"adaptability": "maximum"
},
"scaling_factors": {
"time_multiplier": 0.9,
"quality_target": 95,
"complexity_handling": 0.8,
"parallel_processing": 1.4
},
"optimization_strategies": [
"anticipatory_execution",
"enhanced_parallelization",
"predictive_caching",
"advanced_pattern_recognition"
]
}
{
"model": "glm-4.6",
"base_performance": {
"execution_speed": "moderate",
"reasoning_depth": "medium",
"context_switching": "good",
"adaptability": "medium"
},
"scaling_factors": {
"time_multiplier": 1.25,
"quality_target": 88,
"complexity_handling": 1.2,
"parallel_processing": 0.8
},
"optimization_strategies": [
"structured_sequencing",
"explicit_instruction_optimization",
"step_by_step_validation",
"clear_handoff_protocols"
]
}
Execution Time Allocation:
function scaleExecutionTime(baseTime, model, complexity) {
const profiles = {
'claude-sonnet': { multiplier: 1.0, complexity_factor: 0.9 },
'claude-4.5': { multiplier: 0.9, complexity_factor: 0.8 },
'glm-4.6': { multiplier: 1.25, complexity_factor: 1.2 },
'fallback': { multiplier: 1.5, complexity_factor: 1.4 }
};
const profile = profiles[model] || profiles.fallback;
return baseTime * profile.multiplier * (1 + complexity * profile.complexity_factor);
}
Timeout Adjustments:
Model-Specific Quality Targets:
function getQualityTarget(model, taskType) {
const baseTargets = {
'claude-sonnet': { simple: 85, complex: 90, critical: 95 },
'claude-4.5': { simple: 88, complex: 92, critical: 96 },
'glm-4.6': { simple: 82, complex: 88, critical: 92 },
'fallback': { simple: 80, complex: 85, critical: 90 }
};
return baseTargets[model]?.[taskType] || baseTargets.fallback.complex;
}
Quality Assessment Adaptation:
Memory Management:
function scaleMemoryUsage(model, taskSize) {
const profiles = {
'claude-sonnet': { base_memory: 'medium', scaling_factor: 1.1 },
'claude-4.5': { base_memory: 'medium', scaling_factor: 1.0 },
'glm-4.6': { base_memory: 'high', scaling_factor: 1.3 },
'fallback': { base_memory: 'high', scaling_factor: 1.5 }
};
const profile = profiles[model] || profiles.fallback;
return allocateMemory(profile.base_memory, taskSize * profile.scaling_factor);
}
Concurrent Task Limits:
Real-Time Performance Monitoring:
function monitorPerformance(model, currentMetrics) {
const baseline = getPerformanceBaseline(model);
const variance = calculateVariance(currentMetrics, baseline);
if (variance > 0.2) {
// Performance deviating significantly from baseline
return adjustPerformanceParameters(model, currentMetrics);
}
return currentMetrics;
}
Automatic Parameter Tuning:
function tuneParameters(model, taskHistory) {
const performance = analyzeTaskPerformance(taskHistory);
const adjustments = calculateOptimalAdjustments(model, performance);
return {
timeout_adjustments: adjustments.timeouts,
quality_thresholds: adjustments.quality,
resource_allocation: adjustments.resources,
delegation_strategy: adjustments.delegation
};
}
Pattern Recognition for Performance:
function learnPerformancePatterns(executionHistory) {
const patterns = {
successful_executions: extractSuccessPatterns(executionHistory),
failed_executions: extractFailurePatterns(executionHistory),
optimization_opportunities: identifyOptimizations(executionHistory)
};
return generatePerformanceRecommendations(patterns);
}
Model-Specific Learning:
Execution Metrics:
Model-Specific KPIs:
const modelKPIs = {
'claude-sonnet': {
'context_switching_efficiency': '>= 90%',
'pattern_recognition_accuracy': '>= 85%',
'adaptive_decision_quality': '>= 88%'
},
'claude-4.5': {
'predictive_accuracy': '>= 80%',
'anticipatory_optimization': '>= 75%',
'enhanced_reasoning_utilization': '>= 90%'
},
'glm-4.6': {
'procedural_accuracy': '>= 95%',
'structured_execution_compliance': '>= 98%',
'explicit_instruction_success': '>= 92%'
}
};
Comparative Analysis:
function benchmarkPerformance(model, testSuite) {
const results = runPerformanceTests(model, testSuite);
const baseline = getIndustryBaseline(model);
return {
relative_performance: results.score / baseline.score,
improvement_opportunities: identifyImprovements(results, baseline),
model_strengths: analyzeModelStrengths(results),
optimization_recommendations: generateRecommendations(results)
};
}
Claude Sonnet Optimizations:
Claude 4.5 Optimizations:
GLM-4.6 Optimizations:
Cross-Model Techniques:
function loadPerformanceConfiguration(model) {
const baseConfig = getBasePerformanceProfile(model);
const historicalData = getHistoricalPerformanceData(model);
const currentContext = assessCurrentContext();
return mergeAndOptimizeConfiguration(baseConfig, historicalData, currentContext);
}
function adjustRuntimePerformance(currentMetrics, targetProfile) {
const adjustments = calculateNeededAdjustments(currentMetrics, targetProfile);
return {
timeout_adjustments: adjustments.timeouts,
quality_modifications: adjustments.quality,
resource_reallocation: adjustments.resources,
strategy_changes: adjustments.strategy
};
}
function monitorPerformanceHealth(model, metrics) {
const healthScore = calculatePerformanceHealth(model, metrics);
if (healthScore < 0.8) {
return {
status: 'degraded',
recommendations: generateImprovementActions(model, metrics),
automatic_adjustments: applyAutomaticOptimizations(model, metrics)
};
}
return { status: 'healthy', score: healthScore };
}
This skill ensures optimal performance across all supported models while maintaining high quality standards and adapting to varying task requirements.
This skill should be used when the user asks to "create a slash command", "add a command", "write a custom command", "define command arguments", "use command frontmatter", "organize commands", "create command with file references", "interactive command", "use AskUserQuestion in command", or needs guidance on slash command structure, YAML frontmatter fields, dynamic arguments, bash execution in commands, user interaction patterns, or command development best practices for Claude Code.
This skill should be used when the user asks to "create an agent", "add an agent", "write a subagent", "agent frontmatter", "when to use description", "agent examples", "agent tools", "agent colors", "autonomous agent", or needs guidance on agent structure, system prompts, triggering conditions, or agent development best practices for Claude Code plugins.
This skill should be used when the user asks to "create a hook", "add a PreToolUse/PostToolUse/Stop hook", "validate tool use", "implement prompt-based hooks", "use ${CLAUDE_PLUGIN_ROOT}", "set up event-driven automation", "block dangerous commands", or mentions hook events (PreToolUse, PostToolUse, Stop, SubagentStop, SessionStart, SessionEnd, UserPromptSubmit, PreCompact, Notification). Provides comprehensive guidance for creating and implementing Claude Code plugin hooks with focus on advanced prompt-based hooks API.