Advanced contextual pattern recognition with project fingerprinting, semantic similarity analysis, and cross-domain pattern matching for enhanced learning capabilities
Recognizes project context through fingerprinting and semantic analysis to match and adapt patterns across codebases. Triggers when starting new tasks or adapting solutions to unfamiliar contexts.
/plugin marketplace add bejranonda/LLM-Autonomous-Agent-Plugin-for-Claude/plugin install bejranonda-autonomous-agent@bejranonda/LLM-Autonomous-Agent-Plugin-for-ClaudeThis skill inherits all available tools. When active, it can use any tool Claude has access to.
Provides advanced pattern recognition capabilities that understand project context, compute semantic similarities, and identify transferable patterns across different codebases and domains.
Multi-dimensional Project Analysis:
Fingerprint Generation:
project_fingerprint = {
"technology_hash": sha256(sorted(languages + frameworks + libraries)),
"architecture_hash": sha256(architectural_patterns + structural_metrics),
"domain_hash": sha256(business_domain + problem_characteristics),
"team_hash": sha256(coding_conventions + workflow_patterns),
"composite_hash": combine_all_hashes_with_weights()
}
Multi-factor Similarity Calculation:
Semantic Context Understanding:
Primary Classifications:
Secondary Attributes:
Pattern Transferability Assessment:
def calculate_transferability(pattern, target_context):
technology_match = calculate_tech_overlap(pattern.tech, target_context.tech)
domain_similarity = calculate_domain_similarity(pattern.domain, target_context.domain)
complexity_match = assess_complexity_compatibility(pattern.complexity, target_context.complexity)
transferability = (
technology_match * 0.4 +
domain_similarity * 0.3 +
complexity_match * 0.2 +
pattern.success_rate * 0.1
)
return transferability
Adaptation Strategies:
Weighted Similarity Scoring:
def calculate_contextual_similarity(source_pattern, target_context):
# Technology alignment (40%)
tech_score = calculate_technology_similarity(
source_pattern.technologies,
target_context.technologies
)
# Problem type alignment (30%)
problem_score = calculate_problem_similarity(
source_pattern.problem_type,
target_context.problem_type
)
# Scale and complexity alignment (20%)
scale_score = calculate_scale_similarity(
source_pattern.scale_metrics,
target_context.scale_metrics
)
# Domain relevance (10%)
domain_score = calculate_domain_relevance(
source_pattern.domain,
target_context.domain
)
return (
tech_score * 0.4 +
problem_score * 0.3 +
scale_score * 0.2 +
domain_score * 0.1
)
Multi-dimensional Quality Metrics:
Quality Evolution Tracking:
1. Pattern Capture:
def capture_pattern(task_execution):
pattern = {
"id": generate_unique_id(),
"timestamp": current_time(),
"context": extract_rich_context(task_execution),
"execution": extract_execution_details(task_execution),
"outcome": extract_outcome_metrics(task_execution),
"insights": extract_learning_insights(task_execution),
"relationships": extract_pattern_relationships(task_execution)
}
return refine_pattern_with_learning(pattern)
2. Pattern Validation:
3. Pattern Evolution:
def evolve_pattern(pattern_id, new_execution_data):
existing_pattern = load_pattern(pattern_id)
# Update success metrics
update_success_rates(existing_pattern, new_execution_data)
# Refine context understanding
refine_context_similarity(existing_pattern, new_execution_data)
# Update transferability scores
update_transferability_assessment(existing_pattern, new_execution_data)
# Generate new insights
generate_new_insights(existing_pattern, new_execution_data)
save_evolved_pattern(existing_pattern)
Pattern Relationships:
Relationship Discovery:
def discover_pattern_relationships(patterns):
relationships = {}
for pattern_a in patterns:
for pattern_b in patterns:
if pattern_a.id == pattern_b.id:
continue
# Sequential relationship
if often_sequential(pattern_a, pattern_b):
relationships[f"{pattern_a.id} -> {pattern_b.id}"] = {
"type": "sequential",
"confidence": calculate_sequential_confidence(pattern_a, pattern_b)
}
# Alternative relationship
if are_alternatives(pattern_a, pattern_b):
relationships[f"{pattern_a.id} <> {pattern_b.id}"] = {
"type": "alternative",
"confidence": calculate_alternative_confidence(pattern_a, pattern_b)
}
return relationships
Code Structure Analysis:
Technology Stack Analysis:
def extract_technology_context(project_root):
technologies = {
"languages": detect_languages(project_root),
"frameworks": detect_frameworks(project_root),
"databases": detect_databases(project_root),
"build_tools": detect_build_tools(project_root),
"testing_frameworks": detect_testing_frameworks(project_root),
"deployment_tools": detect_deployment_tools(project_root)
}
return analyze_technology_relationships(technologies)
Runtime Behavior Patterns:
Development Workflow Patterns:
def extract_workflow_context(git_history):
return {
"commit_patterns": analyze_commit_patterns(git_history),
"branching_strategy": detect_branching_strategy(git_history),
"release_patterns": analyze_release_patterns(git_history),
"collaboration_patterns": analyze_collaboration(git_history),
"code_review_patterns": analyze_review_patterns(git_history)
}
Domain Understanding:
Intent Recognition:
def extract_intent_context(task_description, code_changes):
intent_indicators = {
"security": detect_security_intent(task_description, code_changes),
"performance": detect_performance_intent(task_description, code_changes),
"usability": detect_usability_intent(task_description, code_changes),
"maintainability": detect_maintainability_intent(task_description, code_changes),
"functionality": detect_functionality_intent(task_description, code_changes)
}
return rank_intent_by_confidence(intent_indicators)
What Makes Patterns Successful:
Success Factor Analysis:
def analyze_success_factors(pattern):
factors = {}
# Context alignment
factors["context_alignment"] = calculate_context_fit_score(pattern)
# Execution quality
factors["execution_quality"] = analyze_execution_process(pattern)
# Team skill match
factors["skill_alignment"] = analyze_team_skill_match(pattern)
# Tooling support
factors["tooling_support"] = analyze_tooling_effectiveness(pattern)
# Environmental factors
factors["environment_fit"] = analyze_environmental_fit(pattern)
return rank_factors_by_importance(factors)
Common Failure Modes:
Failure Prevention:
def predict_pattern_success(pattern, context):
risk_factors = []
# Check context alignment
if calculate_context_similarity(pattern.context, context) < 0.6:
risk_factors.append({
"type": "context_mismatch",
"severity": "high",
"mitigation": "consider alternative patterns or adapt context"
})
# Check skill requirements
required_skills = pattern.execution.skills_required
available_skills = context.team_skills
missing_skills = set(required_skills) - set(available_skills)
if missing_skills:
risk_factors.append({
"type": "skill_gap",
"severity": "medium",
"mitigation": f"acquire skills: {', '.join(missing_skills)}"
})
return {
"success_probability": calculate_success_probability(pattern, context),
"risk_factors": risk_factors,
"recommendations": generate_mitigation_recommendations(risk_factors)
}
Language-Agnostic Patterns:
Technology-Specific Adaptation:
def adapt_pattern_to_technology(pattern, target_technology):
adaptation_rules = load_adaptation_rules(pattern.source_technology, target_technology)
adapted_pattern = {
"original_pattern": pattern,
"target_technology": target_technology,
"adaptations": [],
"confidence": 0.0
}
for rule in adaptation_rules:
if rule.applicable(pattern):
adaptation = rule.apply(pattern, target_technology)
adapted_pattern.adaptations.append(adaptation)
adapted_pattern.confidence += adaptation.confidence_boost
return validate_adapted_pattern(adapted_pattern)
Complexity Scaling:
Scale Factor Analysis:
def adapt_pattern_for_scale(pattern, target_scale):
current_scale = pattern.scale_context
scale_factor = calculate_scale_factor(current_scale, target_scale)
if scale_factor > 2.0: # Need to scale up
return enhance_pattern_for_scale(pattern, target_scale)
elif scale_factor < 0.5: # Need to scale down
return simplify_pattern_for_scale(pattern, target_scale)
else: # Scale is compatible
return pattern.with_scale_adjustments(target_scale)
1. Immediate Feedback:
2. Short-term Learning (Daily/Weekly):
3. Long-term Learning (Monthly):
Learning About Learning:
def analyze_learning_effectiveness():
learning_metrics = {
"pattern_accuracy": measure_pattern_prediction_accuracy(),
"context_comprehension": measure_context_understanding_quality(),
"adaptation_success": measure_pattern_adaptation_success_rate(),
"knowledge_transfer": measure_cross_project_knowledge_transfer(),
"prediction_improvement": measure_prediction_accuracy_over_time()
}
return generate_learning_insights(learning_metrics)
Adaptive Learning Strategies:
Trigger Conditions:
Optimal Contexts:
Primary Benefits:
Quality Metrics:
code-analysis:
quality-standards:
pattern-learning (basic):
# Context extraction
context = code_analysis.extract_structure() + contextual_pattern_learning.extract_semantic_context()
# Pattern matching
matches = contextual_pattern_learning.find_similar_patterns(context, code_analysis.get_quality_metrics())
# Quality assessment
quality_score = quality_standards.assess_pattern_quality(matches)
# Learning integration
contextual_pattern_learning.capture_pattern_with_context(execution_data, context, quality_score)
This skill creates a comprehensive contextual understanding system that dramatically improves pattern matching, adaptation, and learning capabilities by considering the rich context in which patterns are created and applied.
This skill should be used when the user asks to "create a slash command", "add a command", "write a custom command", "define command arguments", "use command frontmatter", "organize commands", "create command with file references", "interactive command", "use AskUserQuestion in command", or needs guidance on slash command structure, YAML frontmatter fields, dynamic arguments, bash execution in commands, user interaction patterns, or command development best practices for Claude Code.
This skill should be used when the user asks to "create an agent", "add an agent", "write a subagent", "agent frontmatter", "when to use description", "agent examples", "agent tools", "agent colors", "autonomous agent", or needs guidance on agent structure, system prompts, triggering conditions, or agent development best practices for Claude Code plugins.
This skill should be used when the user asks to "create a hook", "add a PreToolUse/PostToolUse/Stop hook", "validate tool use", "implement prompt-based hooks", "use ${CLAUDE_PLUGIN_ROOT}", "set up event-driven automation", "block dangerous commands", or mentions hook events (PreToolUse, PostToolUse, Stop, SubagentStop, SessionStart, SessionEnd, UserPromptSubmit, PreCompact, Notification). Provides comprehensive guidance for creating and implementing Claude Code plugin hooks with focus on advanced prompt-based hooks API.