Implement RAG systems using Weaviate vector database. Use when building semantic search, document retrieval, or knowledge base systems.
Configure Weaviate vector database for RAG systems with schema setup, local embedding models, and Docker service management. Use when building semantic search or knowledge bases.
/plugin marketplace add astoeffer/plugin-marketplace/plugin install cloodle-ai-integration@astoeffer-dev-pluginsThis skill is limited to using the following tools:
Configure MoodleNRW RAG system with Weaviate vector store.
localhost:8095localhost:50055localhost:8000/opt/cloodle/tools/ai/multi_agent_rag_system//opt/cloodle/tools/ai/moodle-chatbot/import weaviate
client = weaviate.Client(
url="http://localhost:8095",
additional_headers={
"X-OpenAI-Api-Key": os.getenv("OPENAI_API_KEY", "")
}
)
# Start Weaviate
cd /opt/cloodle/tools/ai/multi_agent_rag_system
docker-compose up -d
# Check status
docker ps | grep weaviate
# View logs
docker logs multi_agent_rag_system_weaviate_1
schema = {
"class": "MoodleDocument",
"vectorizer": "text2vec-transformers",
"properties": [
{"name": "content", "dataType": ["text"]},
{"name": "source", "dataType": ["string"]},
{"name": "course_id", "dataType": ["int"]}
]
}
client.schema.create_class(schema)
| Model | Dimensions | Best For |
|---|---|---|
| nomic-embed-text | 768 | General purpose |
| bge-m3 | 1024 | Multilingual |
| mxbai-embed-large | 1024 | High quality |
cd /opt/cloodle/tools/ai/multi_agent_rag_system
source .venv/bin/activate
chainlit run app.py