Implement RAG systems using Weaviate vector database. Use when building semantic search, document retrieval, or knowledge base systems.
/plugin marketplace add astoeffer/moodle-plugin-marketplace/plugin install cloodle-ai-integration@astoeffer-dev-pluginsThis skill is limited to using the following tools:
Configure MoodleNRW RAG system with Weaviate vector store.
localhost:8095localhost:50055localhost:8000/opt/cloodle/tools/ai/multi_agent_rag_system//opt/cloodle/tools/ai/moodle-chatbot/import weaviate
client = weaviate.Client(
url="http://localhost:8095",
additional_headers={
"X-OpenAI-Api-Key": os.getenv("OPENAI_API_KEY", "")
}
)
# Start Weaviate
cd /opt/cloodle/tools/ai/multi_agent_rag_system
docker-compose up -d
# Check status
docker ps | grep weaviate
# View logs
docker logs multi_agent_rag_system_weaviate_1
schema = {
"class": "MoodleDocument",
"vectorizer": "text2vec-transformers",
"properties": [
{"name": "content", "dataType": ["text"]},
{"name": "source", "dataType": ["string"]},
{"name": "course_id", "dataType": ["int"]}
]
}
client.schema.create_class(schema)
| Model | Dimensions | Best For |
|---|---|---|
| nomic-embed-text | 768 | General purpose |
| bge-m3 | 1024 | Multilingual |
| mxbai-embed-large | 1024 | High quality |
cd /opt/cloodle/tools/ai/multi_agent_rag_system
source .venv/bin/activate
chainlit run app.py
Create distinctive, production-grade frontend interfaces with high design quality. Use this skill when the user asks to build web components, pages, or applications. Generates creative, polished code that avoids generic AI aesthetics.
This skill should be used when the user asks to "create a hookify rule", "write a hook rule", "configure hookify", "add a hookify rule", or needs guidance on hookify rule syntax and patterns.