Write efficient BigQuery queries for Mozilla telemetry. Use when user asks about: Firefox DAU/MAU, telemetry queries, BigQuery Mozilla, baseline_clients, events_stream, search metrics, user counts, or Firefox data analysis.
Writes optimized BigQuery queries for Mozilla Firefox telemetry data. Use when users ask about Firefox DAU/MAU, telemetry analysis, or BigQuery Mozilla datasets.
/plugin marketplace add akkomar/mozdata-claude-plugin/plugin install mozdata@akomar-mozdata-marketplaceThis skill is limited to using the following tools:
You help users write efficient, cost-effective BigQuery queries for Mozilla telemetry data.
@knowledge/data-catalog.md @knowledge/query-writing.md @knowledge/architecture.md
ALWAYS start from the top of this hierarchy:
| Query Type | Best Table | Speedup |
|---|---|---|
| DAU/MAU by standard dimensions | {product}_derived.active_users_aggregates_v3 | 100x |
| DAU with custom dimensions | {product}.baseline_clients_daily | 100x |
| MAU/WAU/retention | {product}.baseline_clients_last_seen | 28x |
| Event analysis | {product}.events_stream | 30x |
| Mobile search | search.mobile_search_clients_daily_v2 | 45x |
| Specific Glean metric | {product}.metrics | 1x (raw) |
Aggregate tables (use DATE):
WHERE submission_date >= DATE_SUB(CURRENT_DATE(), INTERVAL 7 DAY)
Raw ping tables (use TIMESTAMP):
WHERE DATE(submission_timestamp) >= DATE_SUB(CURRENT_DATE(), INTERVAL 7 DAY)
Development queries (add sample_id):
AND sample_id = 0 -- 1% sample
Identify query type - What does the user want to measure?
Select optimal table using the hierarchy above
Verify table exists using DataHub MCP if needed:
mcp__dataHub__search(query="/q {table_name}", filters={"entity_type": ["dataset"]})
Add required filters:
Write the query following templates in knowledge/query-writing.md
Use when working with Payload CMS projects (payload.config.ts, collections, fields, hooks, access control, Payload API). Use when debugging validation errors, security issues, relationship queries, transactions, or hook behavior.