Observability patterns for Python applications. Triggers on: logging, metrics, tracing, opentelemetry, prometheus, observability, monitoring, structlog, correlation id.
/plugin marketplace add 0xDarkMatter/claude-mods/plugin install 0xdarkmatter-claude-mods@0xDarkMatter/claude-modsThis skill is limited to using the following tools:
assets/logging-config.pyreferences/metrics.mdreferences/structured-logging.mdreferences/tracing.mdLogging, metrics, and tracing for production applications.
import structlog
# Configure structlog
structlog.configure(
processors=[
structlog.contextvars.merge_contextvars,
structlog.processors.add_log_level,
structlog.processors.TimeStamper(fmt="iso"),
structlog.processors.JSONRenderer(),
],
wrapper_class=structlog.make_filtering_bound_logger(logging.INFO),
context_class=dict,
logger_factory=structlog.PrintLoggerFactory(),
)
logger = structlog.get_logger()
# Usage
logger.info("user_created", user_id=123, email="test@example.com")
# Output: {"event": "user_created", "user_id": 123, "email": "test@example.com", "level": "info", "timestamp": "2024-01-15T10:00:00Z"}
import structlog
from contextvars import ContextVar
from uuid import uuid4
request_id_var: ContextVar[str] = ContextVar("request_id", default="")
def bind_request_context(request_id: str | None = None):
"""Bind request ID to logging context."""
rid = request_id or str(uuid4())
request_id_var.set(rid)
structlog.contextvars.bind_contextvars(request_id=rid)
return rid
# FastAPI middleware
@app.middleware("http")
async def request_context_middleware(request, call_next):
request_id = request.headers.get("X-Request-ID") or str(uuid4())
bind_request_context(request_id)
response = await call_next(request)
response.headers["X-Request-ID"] = request_id
structlog.contextvars.clear_contextvars()
return response
from prometheus_client import Counter, Histogram, Gauge, generate_latest
from fastapi import FastAPI, Response
# Define metrics
REQUEST_COUNT = Counter(
"http_requests_total",
"Total HTTP requests",
["method", "endpoint", "status"]
)
REQUEST_LATENCY = Histogram(
"http_request_duration_seconds",
"HTTP request latency",
["method", "endpoint"],
buckets=[0.01, 0.05, 0.1, 0.5, 1.0, 5.0]
)
ACTIVE_CONNECTIONS = Gauge(
"active_connections",
"Number of active connections"
)
# Middleware to record metrics
@app.middleware("http")
async def metrics_middleware(request, call_next):
ACTIVE_CONNECTIONS.inc()
start = time.perf_counter()
response = await call_next(request)
duration = time.perf_counter() - start
REQUEST_COUNT.labels(
method=request.method,
endpoint=request.url.path,
status=response.status_code
).inc()
REQUEST_LATENCY.labels(
method=request.method,
endpoint=request.url.path
).observe(duration)
ACTIVE_CONNECTIONS.dec()
return response
# Metrics endpoint
@app.get("/metrics")
async def metrics():
return Response(
content=generate_latest(),
media_type="text/plain"
)
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter
# Setup
provider = TracerProvider()
processor = BatchSpanProcessor(OTLPSpanExporter(endpoint="localhost:4317"))
provider.add_span_processor(processor)
trace.set_tracer_provider(provider)
tracer = trace.get_tracer(__name__)
# Manual instrumentation
async def process_order(order_id: int):
with tracer.start_as_current_span("process_order") as span:
span.set_attribute("order_id", order_id)
with tracer.start_as_current_span("validate_order"):
await validate(order_id)
with tracer.start_as_current_span("charge_payment"):
await charge(order_id)
| Library | Purpose |
|---|---|
| structlog | Structured logging |
| prometheus-client | Metrics collection |
| opentelemetry | Distributed tracing |
| Metric Type | Use Case |
|---|---|
| Counter | Total requests, errors |
| Histogram | Latencies, sizes |
| Gauge | Current connections, queue size |
./references/structured-logging.md - structlog configuration, formatters./references/metrics.md - Prometheus patterns, custom metrics./references/tracing.md - OpenTelemetry, distributed tracing./assets/logging-config.py - Production logging configurationPrerequisites:
python-async-patterns - Async context propagationRelated Skills:
python-fastapi-patterns - API middleware for metrics/tracingpython-cli-patterns - CLI logging patternsIntegration Skills:
python-database-patterns - Database query tracingCreating algorithmic art using p5.js with seeded randomness and interactive parameter exploration. Use this when users request creating art using code, generative art, algorithmic art, flow fields, or particle systems. Create original algorithmic art rather than copying existing artists' work to avoid copyright violations.
Applies Anthropic's official brand colors and typography to any sort of artifact that may benefit from having Anthropic's look-and-feel. Use it when brand colors or style guidelines, visual formatting, or company design standards apply.
Create beautiful visual art in .png and .pdf documents using design philosophy. You should use this skill when the user asks to create a poster, piece of art, design, or other static piece. Create original visual designs, never copying existing artists' work to avoid copyright violations.