Design a new MCP server with interactive guidance and generate comprehensive JSON skeleton specification
Designs a new MCP server with interactive requirements gathering and generates a comprehensive JSON skeleton specification including tool architecture, token systems, and implementation guides. Use this when starting a new MCP project to establish best practices for tool organization, progressive discovery, and token efficiency before implementation.
/plugin marketplace add standardbeagle/standardbeagle-tools/plugin install mcp-architect@standardbeagle-tools[server-name]Generate a comprehensive design specification for a new MCP server following best practices for multi-tool organization, progressive discovery, and token efficiency.
Ask the user about the MCP server:
Use AskUserQuestion to gather this information interactively.
Based on requirements, recommend:
Present the recommended architecture to the user for approval.
Create a detailed JSON specification that includes:
Required sections:
{
"mcp_design": {
"metadata": {
"name": "server-name",
"version": "0.1.0",
"description": "...",
"pattern": "Hub-and-Spoke",
"tool_count": 12,
"progressive_discovery": true
},
"architecture": {
"tool_relationships": "How tools interact, data flow",
"token_systems": {
"result_id": {
"generated_by": ["search"],
"consumed_by": ["get_definition", "find_references"],
"purpose": "Reference search results across tools"
}
},
"dependencies": "Module structure, required libraries"
},
"enforced_questions": [
"How should errors be handled?",
"What authentication is needed?",
"Should results be cached?",
"What are rate limits?"
],
"tools": [
{
"name": "search",
"group": "query",
"description": "Search for X",
"parameters": {
"input_schema": {
"pattern": {
"type": "string",
"required": true,
"description": "Search pattern"
}
},
"output_schema": {
"results": "Array<{id, name, preview, confidence}>",
"has_more": "boolean",
"total": "integer"
}
},
"id_tokens": {
"generates": ["result_id"],
"consumes": []
},
"relationships": "Hub tool - feeds result_ids to detail tools",
"use_cases": [
"Find code patterns",
"Discover relevant symbols"
],
"user_stories": [
"As a developer, I want to search code to find implementations"
],
"implementation_guide": {
"required_functions": [
"existing_search_fn(pattern) - wraps existing search",
"format_results(raw) - convert to standard format"
],
"usage_patterns": "Call existing_search_fn, map results to schema with IDs",
"pseudocode": "results = existing_search_fn(pattern); return results.map((r, i) => ({id: generateId(i), ...r}))"
},
"token_budget": 100,
"performance": "fast"
}
],
"progressive_discovery": {
"info_tool_structure": {
"overview": "Tool categories and counts",
"category_detail": "Tools in specific category",
"tool_help": "Full documentation for tool"
},
"detail_levels": {
"overview": "~50 tokens",
"category": "~100 tokens",
"tool": "~400 tokens"
}
},
"workflows": [
{
"name": "Main Workflow 1",
"steps": [
"search(pattern) → result_ids",
"get_definition(result_id) → full details"
],
"token_cost": "~300 tokens total"
}
],
"implementation_notes": {
"critical_patterns": [
"Always accept extra parameters with warnings",
"Use sparse tables in info tool",
"Progressive detail by confidence/relevance",
"ID references to save tokens"
],
"handoff_checklist": [
"Review tool schemas",
"Implement required_functions",
"Add error handling",
"Test with example workflows",
"Validate against MCP spec"
]
}
}
}
Save the JSON skeleton to a file:
./mcp-design-{name}.json)After generating the skeleton, tell the user:
Next steps:
Resources:
/analyze-mcp command to validate designSparse table summary:
MCP Server Design: code-search
================================
Pattern: Hub-and-Spoke
Tools: 8 total
Tool Groups
-----------
Group | Count | Pattern
--------- | ----- | --------
query | 2 | Fast discovery
lookup | 3 | Detail retrieval
analysis | 2 | Deep analysis
discovery | 1 | Info tool
Token Systems
-------------
ID Type | Generated By | Consumed By
---------- | ------------ | -----------
result_id | search | get_definition, find_references
symbol_id | get_definition | analyze_dependencies
Workflows
---------
1. Find Implementation: search → get_definition
2. Understand Usage: search → find_references → get_context
Output: ./mcp-design-code-search.json
Always include in implementation_guide:
"Accept unknown parameters with warnings, don't reject unless severe issue"
For search/query tools, always include:
"High confidence (>0.8): full details
Medium confidence (0.5-0.8): summary
Low confidence (<0.5): ID only"
Standard flags in all responses:
{
"has_more": boolean,
"total": integer,
"returned": integer,
"complete": boolean
}
For info tool, recommend:
"Use sparse tables for human readability, provide JSON array option for automation"
When user asks: "Design an MCP for managing Kubernetes pods"
Generate skeleton with:
When user asks: "Design an MCP for document search"
Generate skeleton with:
If user requirements are unclear:
If output path already exists:
The goal is a comprehensive design document that a developer can implement without needing to make major architectural decisions.