Physics ML - neural operators, PINNs, equivariant networks
Trains physics-informed neural networks including FNO, E3NN, and PINNs for solving PDEs.
/plugin marketplace add slapglif/theory2-physics-plugin/plugin install theory2-physics@theory2-physics-plugin<operation> [options]Train and use physics-informed machine learning models.
Learn PDE solution operators:
# Standard FNO configuration
/home/mikeb/theory2/.venv/bin/theory --json ml train-fno \
--modes=16 --width=64 --layers=4
# Memory-efficient with Tucker factorization
/home/mikeb/theory2/.venv/bin/theory --json ml train-fno \
--modes=32 --width=128 --factorization=tucker
# Check available models
/home/mikeb/theory2/.venv/bin/theory --json ml info
For molecular and atomic systems with geometric symmetry:
# Standard E3NN
/home/mikeb/theory2/.venv/bin/theory --json ml train-e3nn \
--irreps-hidden="16x0e+16x1o+16x2e" --layers=3
# With gated nonlinearities
/home/mikeb/theory2/.venv/bin/theory --json ml train-e3nn \
--irreps-hidden="32x0e+16x1o+8x2e" --use-gates
NxLp where:
Example: 16x0e + 16x1o + 8x2e = 16 scalars + 16 vectors + 8 symmetric tensors
Solve PDEs without training data:
# Heat equation
/home/mikeb/theory2/.venv/bin/theory --json ml solve-pde \
--pde-type=heat --alpha=0.01 --iterations=10000
# Poisson equation
/home/mikeb/theory2/.venv/bin/theory --json ml solve-pde \
--pde-type=poisson --iterations=20000
Always use --json for structured output.