/exportcommands - Export Claude Commands to Reference Repository
Exports Claude command composition system to reference repository with automated PR creation
/plugin marketplace add jleechanorg/claude-commands/plugin install claude-commands@claude-commands-marketplaceWhen this command is invoked, YOU (Claude) must execute these steps immediately: This is NOT documentation - these are COMMANDS to execute right now. Use TodoWrite to track progress through multi-phase workflows.
Action Steps: Before: Manual step-by-step development
1. Analyze the issue manually
2. Write code manually
3. Test manually
4. Create PR manually
5. Handle review comments manually
After: Single command workflows
/pr "fix authentication bug" # ā analyze ā implement ā test ā create PR
/copilot # ā comprehensive PR analysis ā apply all fixes
/execute "add user dashboard" # ā plan ā implement ā test ā document
/pr - Complete PR Workflow OrchestratorAction Steps: What It Does: End-to-end PR creation from analysis to submission, handling the entire development lifecycle.
The Magic: Single command that handles analysis, implementation, testing, and PR creation autonomously.
Composition Architecture:
/pr "fix authentication validation bug"
Internal Workflow Chain:
Analysis Phase:
Implementation Phase:
Quality Assurance Phase:
Git Workflow Phase:
Real Workflow Example:
/pr "fix login timeout issue"
ā
Analyze login flow ā Identify timeout problem ā Implement fix ā
Run tests ā Create branch ā Commit changes ā Push ā Create PR
Action Steps: Repository Access Verification:
/tmp/claude_commands_export_$(date +%s)/Content Filtering Setup: 5. Initialize comprehensive export filter system with multiple filter types 6. Exclude project-specific directories and files ($PROJECT_ROOT/, run_tests.sh, testi.sh) 7. Filter out personal/project references ($USER, your-project.com, Firebase specifics) 8. Transform project-specific paths to generic placeholders 9. Set up warning header templates for exported files
Action Steps: šØ MANDATORY CLEANUP PHASE: Remove obsolete files that no longer exist in source repository
### Phase 5: Step 1: Analyze Current Command System State
**Action Steps:**
First, let me analyze the current state of the command system to provide intelligent README generation:
```python
### Phase 6: Step 2: Execute Python Implementation
**Action Steps:**
```python
### Phase 7: Step 3: LLM-Enhanced README Generation (PRESERVED CAPABILITY)
**Action Steps:**
While the Python implementation generates a comprehensive README, this LLM can provide additional intelligent analysis:
**Command Pattern Analysis**: Analyze which commands are compositional powerhouses
```python
### Phase 8: EXECUTION
**Action Steps:**
**š PRIMARY EXECUTION PATH**: Use the Python implementation for reliable export
```bash
python3 .claude/commands/exportcommands.py
š§ LLM ENHANCEMENT CAPABILITIES:
Action Steps: Let me now execute the export using the Python implementation:
import os
import subprocess
### Phase 10: Step 2: Execute Python Implementation
**Action Steps:**
```python
### Phase 11: Step 3: LLM-Enhanced README Generation with Version Intelligence
**Action Steps:**
šØ **VERSION GENERATION BY LLM**: The LLM now intelligently generates version numbers and change summaries rather than mechanical Python incrementing.
**LLM Version Analysis Process**:
1. **Examine Previous Version**: Check target repo's current README for last version
2. **Analyze Git History**: Review recent commits since last export
3. **Determine Version Bump**:
- **Patch (x.x.1)**: Bug fixes, minor updates, documentation
- **Minor (x.1.0)**: New features, significant enhancements
- **Major (1.0.0)**: Breaking changes, major architecture shifts
4. **Generate Change Summary**: Create meaningful bullet points based on actual changes
5. **Update README_EXPORT_TEMPLATE.md**: Fill LLM_VERSION placeholders with intelligent content
šØ **CRITICAL ENHANCEMENT**: The export README must showcase the revolutionary command combination capabilities, not just be a basic file listing.
**Enhanced README Requirements**:
6. **ā” COMMAND COMBINATION SUPERPOWERS** section prominently featured
7. Multi-command workflow examples (`/archreview /thinkultra /fake`)
8. Complete PR lifecycle automation documentation (`/pr fix the settings button`)
9. AI-powered fake code detection capabilities
10. Quick start examples and advanced workflow patterns
11. Professional setup guide with practical value proposition
While the Python implementation generates a comprehensive README, this LLM can provide additional intelligent analysis:
**Command Pattern Analysis**: Analyze which commands are compositional powerhouses
```python
### Phase 12: Step 4: Enhanced Main README.md Update
**Action Steps:**
šØ **MANDATORY STEP**: Update the main README.md (not create variants) with command combination superpowers:
```bash
### Phase 13: šÆ Revolutionary Multi-Command Workflows
**Action Steps:**
**Break the One-Command Limit**: Normally, Claude can only handle one command per sentence. This system lets you chain multiple commands in a single prompt, creating sophisticated multi-step workflows.
**Examples**:
1. **Comprehensive PR Review**: `/archreview /thinkultra /fake`
2. `/archreview` - Architectural analysis of the codebase
3. `/thinkultra` - Deep strategic thinking about changes
4. `/fake` - AI-powered detection of placeholder code
5. **Complete PR Lifecycle**: `/pr fix the settings button`
6. Automatically runs: `/think` ā `/execute` ā `/push` ā `/copilot` ā `/review`
7. Full end-to-end automation with zero manual intervention
### Phase 14: š Complete Workflow Automation
**Action Steps:**
**The `/copilot` Advantage**: Responds to GitHub comments and makes fixes automatically, handling the entire feedback loop without manual intervention.
### Phase 15: EXECUTION
**Action Steps:**
**š PRIMARY EXECUTION PATH**: Use the Python implementation for reliable export
```bash
python3 .claude/commands/exportcommands.py
š§ LLM ENHANCEMENT CAPABILITIES:
Action Steps: Let me now execute the export using the Python implementation:
import os
import subprocess
## š REFERENCE DOCUMENTATION
# /exportcommands - Export Claude Commands to Reference Repository
šØ **CRITICAL SUCCESS REQUIREMENT**: This command MUST always print the export PR URL as the final output. The command is NOT complete without providing the PR URL to the user.
šØ **REPOSITORY SAFETY RULE**: Export operations NEVER delete, move, or modify files in the current repository. Export only copies files for external sharing. The current repository remains completely unchanged.
**Purpose**: Export your complete command composition system to https://github.com/jleechanorg/claude-commands for reference and sharing
**Implementation**: This command delegates all technical operations to the Python implementation (`exportcommands.py`) while providing LLM-driven README generation and intelligent export analysis.
**Usage**: `/exportcommands` - Executes complete export pipeline with automated PR creation
## šÆ COMMAND COMPOSITION ARCHITECTURE
**The Simple Hook That Changes Everything**: At its core, `/exportcommands` is just a file export script. But what makes it powerful is that it's exporting a complete **command composition system** that transforms how you interact with Claude Code.
### The Composition Pattern
Each command is designed to **compose** with others through a shared protocol:
- **TodoWrite Integration**: Commands break down into trackable steps
- **Memory Enhancement**: Learning from previous executions
- **Git Workflow Integration**: Automatic branch management and PR creation
- **Testing Integration**: Automatic test running and validation
- **Error Recovery**: Smart handling of failures and retries
### Key Compositional Commands Being Exported
**Workflow Orchestrators**:
- `/pr` - Complete PR workflow (analyze ā fix ā test ā create)
- `/copilot` - Autonomous PR analysis and fixing
- `/execute` - Auto-approval development with TodoWrite tracking
- `/orch` - Multi-agent task delegation system
**Building Blocks**:
- `/think` + `/arch` + `/debug` = Cognitive analysis chain
- `/test` + `/fix` + `/verify` = Quality assurance chain
- `/plan` + `/implement` + `/validate` = Development chain
**The Hook Architecture**: Simple `.md` files that Claude Code reads as executable instructions, enabling complex behavior through composition rather than complexity.
## ā” COMMAND COMBINATION SUPERPOWERS
### Combine Multiple Commands in a Single Prompt
**Revolutionary Feature**: Normally, Claude can only handle one command per sentence. This tool lets you string them together in a single prompt, creating sophisticated multi-step workflows.
**Example**: Give this PR a thorough code review with `/archreview /thinkultra /fake`
This runs:
1. `/archreview` - Architectural analysis of the codebase
2. `/thinkultra` - Deep strategic thinking about the changes
3. `/fake` - Detection of placeholder or incomplete code
**The Foundation**: This command combination capability is the foundation for creating more complex, multi-step workflows that would normally require multiple separate interactions.
### Automate Your PR Lifecycle
**Complete Automation**: You can automate your entire pull request workflow with natural language commands.
**Example**: `/pr fix the settings button`
This automatically runs the whole sequence:
- `/think` - Strategic analysis of the settings button issue
- `/execute` - Implementation with auto-approval
- `/push` - Create PR with comprehensive description
- `/copilot` - Respond to GitHub comments and make fixes
- `/review` - Claude's own comprehensive code review
**The `/copilot` Advantage**: The `/copilot` command even responds to GitHub comments and makes fixes automatically, handling the entire feedback loop without manual intervention.
### Detect Fake Code with AI Analysis
**Quality Assurance**: Built-in detection for "fake" code that Claude sometimes generates when pushed too hard.
**The Problem**: When overloaded, Claude sometimes writes placeholder code instead of implementing what you asked for - like just returning success without actual logic.
**The Solution**: If something seems off, run the `/fake` command to systematically detect:
- Placeholder implementations
- Mock responses without real logic
- TODOs disguised as complete features
- Demo code that doesn't actually work
**Smart Detection**: This isn't just pattern matching - it's AI-powered analysis that understands the difference between legitimate code and fake implementations.
## š COMMAND DEEP DIVE - The Composition Powerhouses
### `/execute` - Auto-Approval Development Orchestrator
**What It Does**: The ultimate autonomous development command that handles everything from planning to implementation with built-in auto-approval.
**The Magic**: Turns complex development tasks into structured, trackable workflows without manual approval gates.
**Composition Architecture**:
```bash
/execute "implement user authentication"
Internal Workflow:
Phase 1 - Planning:
Phase 2 - Auto-Approval:
Phase 3 - TodoWrite Orchestration:
Real Example (This very task demonstrates /execute):
User: /execute "focus on command composition and explain details on /execute..."
Claude:
Phase 1 - Planning: [complexity assessment, timeline, approach]
Phase 2 - Auto-approval: "User already approves - proceeding"
Phase 3 - Implementation: [TodoWrite tracking, step execution]
/plan - Manual Approval Development PlanningWhat It Does: Structured development planning with explicit user approval required before execution.
The Magic: Perfect for complex tasks where you want to review the approach before committing resources.
Composition Architecture:
/plan "redesign authentication system"
Workflow:
When to Use:
/copilot - Autonomous PR Analysis & Comprehensive FixingWhat It Does: Comprehensive PR analysis with autonomous fixing of all detected issues - no approval prompts.
The Magic: Scans PRs for every type of issue (conflicts, CI failures, code quality, comments) and fixes everything automatically.
Composition Architecture:
/copilot # Analyzes current PR context
Autonomous Workflow Chain:
Comprehensive Scanning:
Intelligent Fixing:
Validation Loop:
No Approval Required: Unlike other commands, /copilot operates autonomously - perfect for continuous integration workflows.
Real Example:
PR has: merge conflicts + failing tests + 5 review comments
/copilot
ā
Resolve conflicts ā Fix failing tests ā Address all comments ā
Re-run validation ā Push fixes ā Verify success
/orch - Multi-Agent Task Delegation SystemWhat It Does: Delegates tasks to autonomous tmux-based agents that work in parallel across different branches and contexts.
The Magic: Spawns specialized agents (frontend, backend, testing, opus-master) that execute tasks independently with full Git workflow management.
Composition Architecture:
/orch "implement user dashboard with tests and documentation"
Multi-Agent Workflow:
Task Analysis & Delegation:
Autonomous Agent Execution:
Agent Coordination:
Integration & Delivery:
Agent Types:
Cost: $0.003-$0.050 per task (highly efficient)
Real Example:
/orch "add user notifications system"
ā
Frontend Agent: notification UI components
Backend Agent: notification API endpoints
Testing Agent: notification test suite
Opus-Master: architecture review and integration
ā
All agents work in parallel ā Create individual PRs ā Integration verification
Monitoring:
/orch monitor agents # Check agent status
/orch "What's running?" # Current task overview
tmux attach-session -t task-agent-frontend # Direct agent access
export REPO_DIR="/tmp/claude_commands_repo_fresh" gh repo clone jleechanorg/claude-commands "$REPO_DIR" cd "$REPO_DIR" && git checkout main
export NEW_BRANCH="export-fresh-$(date +%Y%m%d-%H%M%S)" git checkout -b "$NEW_BRANCH"
rm -rf commands/* orchestration/* scripts/* || true echo "Cleared existing export directories for fresh sync"
**Pre-Export File Filtering**:
```bash
# Create exclusion list for project-specific files
cat > /tmp/export_exclusions.txt << 'EOF'
tests/run_tests.sh
testi.sh
**/test_integration/**
copilot_inline_reply_example.sh
run_ci_replica.sh
testing_http/
testing_ui/
testing_mcp/
ci_replica/
analysis/
automation/
claude-bot-commands/
coding_prompts/
prototype/
EOF
# Filter files before export from staging area
while IFS= read -r pattern; do
case "$pattern" in
**/*)
# Use regex for patterns with ** (recursive directory matching)
find staging -regextype posix-extended -regex ".*/${pattern#**/}" -exec rm -rf {} + 2>/dev/null || true
;;
*)
# Use path for simple patterns
find staging -path "*${pattern}" -exec rm -rf {} + 2>/dev/null || true
;;
esac
# Also remove root directories that may be copied during main export
rm -rf "staging/${pattern%/}" 2>/dev/null || true
done < /tmp/export_exclusions.txt
CLAUDE.md Export:
# Add reference-only warning header
cat > staging/CLAUDE.md << 'EOF'
# š Reference Export - Adaptation Guide
**Note**: This is a reference export from a working Claude Code project. You may need to personally debug some configurations, but Claude Code can easily adjust for your specific needs.
These configurations may include:
- Project-specific paths and settings that need updating for your environment
- Setup assumptions and dependencies specific to the original project
- References to particular GitHub repositories and project structures
Feel free to use these as a starting point - Claude Code excels at helping you adapt and customize them for your specific workflow.
---
EOF
# Filter and append original CLAUDE.md
cp CLAUDE.md /tmp/claude_filtered.md
# Apply content filtering
sed -i 's|$PROJECT_ROOT/|$PROJECT_ROOT/|g' /tmp/claude_filtered.md
sed -i 's|worldarchitect\.ai|your-project.com|g' /tmp/claude_filtered.md
sed -i 's|$USER|${USER}|g' /tmp/claude_filtered.md
cat /tmp/claude_filtered.md >> staging/CLAUDE.md
Commands Export (.claude/commands/ ā commands/):
# Copy commands with filtering
for file in .claude/commands/*.md .claude/commands/*.py; do
# Skip project-specific files and template files
case "$(basename "$file")" in
"testi.sh"|"run_tests.sh"|"copilot_inline_reply_example.sh"|"README_EXPORT_TEMPLATE.md")
echo "Skipping project-specific/template file: $file"
continue
;;
esac
# Copy and filter content
cp "$file" "staging/commands/$(basename "$file")"
# Apply content transformations - completely remove project-specific references
sed -i 's|$PROJECT_ROOT/|$PROJECT_ROOT/|g' "staging/commands/$(basename "$file")"
sed -i 's|worldarchitect\.ai|your-project.com|g' "staging/commands/$(basename "$file")"
sed -i 's|$USER|${USER}|g' "staging/commands/$(basename "$file")"
sed -i 's|TESTING=true python|TESTING=true python|g' "staging/commands/$(basename "$file")"
# Remove any remaining project-specific path references
sed -i 's|/home/${USER}/projects/worldarchitect\.ai/[^/]*||g' "staging/commands/$(basename "$file")"
done
Scripts Export (claude_command_scripts/ ā scripts/):
# Export scripts with comprehensive filtering
for script in claude_command_scripts/*.sh claude_command_scripts/*.py; do
if [[ -f "$script" ]]; then
script_name=$(basename "$script")
# Skip project-specific scripts
case "$script_name" in
"run_tests.sh"|"testi.sh"|"*integration*")
echo "Skipping project-specific script: $script_name"
continue
;;
esac
# Copy and transform
cp "$script" "staging/scripts/$script_name"
# Apply transformations - completely remove project-specific references
sed -i 's|$PROJECT_ROOT/|$PROJECT_ROOT/|g' "staging/scripts/$script_name"
sed -i 's|worldarchitect\.ai|your-project.com|g' "staging/scripts/$script_name"
sed -i 's|/home/${USER}/projects/worldarchitect\.ai/[^/]*||g' "staging/scripts/$script_name"
sed -i 's|TESTING=true python|TESTING=true python|g' "staging/scripts/$script_name"
# Add dependency header
sed -i '1i\#!/bin/bash\n# ā ļø REQUIRES PROJECT ADAPTATION\n# This script contains project-specific paths and may need modification\n' "staging/scripts/$script_name"
fi
done
šØ Hooks Export (.claude/hooks/ ā hooks/) - ESSENTIAL CLAUDE CODE FUNCTIONALITY:
# Export Claude Code hooks with comprehensive filtering
echo "š Exporting Claude Code hooks..."
# Create hooks destination directory
mkdir -p staging/hooks
# Check if source hooks directory exists
if [[ ! -d ".claude/hooks" ]]; then
echo "ā ļø Warning: .claude/hooks directory not found - skipping hooks export"
else
echo "š Found .claude/hooks directory - proceeding with export"
# Enable nullglob to handle cases where no files match patterns
shopt -s nullglob
# Export hook scripts with filtering (including nested subdirectories)
find .claude/hooks -type f \( -name "*.sh" -o -name "*.py" -o -name "*.md" \) -print0 | while IFS= read -r -d '' hook_file; do
hook_name=$(basename "$hook_file")
relative_path="${hook_file#.claude/hooks/}"
# Skip test and example files
case "$hook_name" in
*test*|*example*|debug_hook.sh)
echo " ā Skipping $hook_name (test/debug file)"
continue
;;
esac
echo " š Copying: $relative_path"
# Create subdirectory structure if needed
hook_dir=$(dirname "staging/hooks/$relative_path")
mkdir -p "$hook_dir"
# Copy and transform hook files
cp "$hook_file" "staging/hooks/$relative_path"
# Apply comprehensive content transformations
sed -i 's|$PROJECT_ROOT/|$PROJECT_ROOT/|g' "staging/hooks/$relative_path"
sed -i 's|worldarchitect\.ai|your-project.com|g' "staging/hooks/$relative_path"
sed -i 's|$USER|${USER}|g' "staging/hooks/$relative_path"
sed -i 's|TESTING=true python|TESTING=true python|g' "staging/hooks/$relative_path"
sed -i 's|/home/${USER}/projects/worldarchitect\.ai/[^/]*||g' "staging/hooks/$relative_path"
# Make scripts executable and add adaptation headers
case "$hook_name" in
*.sh)
chmod +x "staging/hooks/$relative_path"
# Add adaptation header only if file doesn't start with shebang
if ! head -1 "staging/hooks/$relative_path" | grep -q '^#!'; then
sed -i '1i\#!/bin/bash\n# šØ CLAUDE CODE HOOK - ESSENTIAL FUNCTIONALITY\n# ā ļø REQUIRES PROJECT ADAPTATION - Contains project-specific configurations\n# This hook provides core Claude Code workflow automation\n# Adapt paths and project references for your environment\n' "staging/hooks/$relative_path"
else
sed -i '1a\# šØ CLAUDE CODE HOOK - ESSENTIAL FUNCTIONALITY\n# ā ļø REQUIRES PROJECT ADAPTATION - Contains project-specific configurations\n# This hook provides core Claude Code workflow automation\n# Adapt paths and project references for your environment\n' "staging/hooks/$relative_path"
fi
;;
*.py)
chmod +x "staging/hooks/$relative_path"
# Add adaptation note after any existing shebang
if head -1 "staging/hooks/$relative_path" | grep -q '^#!'; then
sed -i '1a\# šØ CLAUDE CODE HOOK - ESSENTIAL FUNCTIONALITY\n# ā ļø REQUIRES PROJECT ADAPTATION - Contains project-specific configurations\n# This hook provides core Claude Code workflow automation\n# Adapt imports and project references for your environment\n' "staging/hooks/$relative_path"
else
sed -i '1i\# šØ CLAUDE CODE HOOK - ESSENTIAL FUNCTIONALITY\n# ā ļø REQUIRES PROJECT ADAPTATION - Contains project-specific configurations\n# This hook provides core Claude Code workflow automation\n# Adapt imports and project references for your environment\n' "staging/hooks/$relative_path"
fi
;;
esac
done
# Restore nullglob setting
shopt -u nullglob
# Note: Subdirectories are now handled by the find loop above
echo "ā
Hooks export completed successfully"
fi
šØ Agents Export (.claude/agents/ ā agents/) - SPECIALIZED AI AGENT CONFIGURATIONS:
# Export Claude Code agent configurations with comprehensive filtering
echo "š¤ Exporting Claude Code agent configurations..."
# Create agents destination directory
mkdir -p staging/agents
# Check if source agents directory exists
if [[ ! -d ".claude/agents" ]]; then
echo "ā ļø Warning: .claude/agents directory not found - skipping agents export"
else
echo "š Found .claude/agents directory - proceeding with export"
# Enable nullglob to handle cases where no files match patterns
shopt -s nullglob
# Export agent configuration files with filtering
find .claude/agents -type f \( -name "*.md" -o -name "*.py" -o -name "*.json" \) -print0 | while IFS= read -r -d '' agent_file; do
agent_name=$(basename "$agent_file")
relative_path="${agent_file#.claude/agents/}"
# Skip test and example files
case "$agent_name" in
*test*|*example*|debug_agent.md)
echo " ā Skipping $agent_name (test/debug file)"
continue
;;
esac
echo " š¤ Copying: $relative_path"
# Create subdirectory structure if needed
agent_dir=$(dirname "staging/agents/$relative_path")
mkdir -p "$agent_dir"
# Copy and transform agent files
cp "$agent_file" "staging/agents/$relative_path"
# Apply comprehensive content transformations
sed -i 's|$PROJECT_ROOT/|$PROJECT_ROOT/|g' "staging/agents/$relative_path"
sed -i 's|worldarchitect\.ai|your-project.com|g' "staging/agents/$relative_path"
sed -i 's|$USER|${USER}|g' "staging/agents/$relative_path"
sed -i 's|TESTING=true python|TESTING=true python|g' "staging/agents/$relative_path"
sed -i 's|/home/${USER}/projects/worldarchitect\.ai/[^/]*||g' "staging/agents/$relative_path"
# Add agent configuration header for markdown files
case "$agent_name" in
*.md)
# Add adaptation header only if file doesn't start with existing header
if ! head -5 "staging/agents/$relative_path" | grep -q 'šØ CLAUDE CODE AGENT'; then
sed -i '1i\# šØ CLAUDE CODE AGENT CONFIGURATION\n# ā ļø REQUIRES PROJECT ADAPTATION - Contains project-specific configurations\n# This agent provides specialized AI capabilities for Claude Code workflows\n# Adapt project references and configurations for your environment\n' "staging/agents/$relative_path"
fi
;;
esac
done
# Restore nullglob setting
shopt -u nullglob
echo "ā
Agents export completed successfully"
fi
šØ Root-Level Infrastructure Scripts Export (Root ā infrastructure-scripts/):
# Export development environment infrastructure scripts
mkdir -p staging/infrastructure-scripts
# Dynamically discover valuable root-level scripts to export
mapfile -t ROOT_SCRIPTS < <(ls -1 *.sh 2>/dev/null | grep -E '^(claude_|start-claude-bot|integrate|resolve_conflicts|sync_branch|setup-github-runner|test_server_manager)\.sh$')
for script_name in "${ROOT_SCRIPTS[@]}"; do
if [[ -f "$script_name" ]]; then
echo "Exporting infrastructure script: $script_name"
# Copy and transform
cp "$script_name" "staging/infrastructure-scripts/$script_name"
# Apply comprehensive content transformations
sed -i 's|/tmp/worldarchitect\.ai|/tmp/$PROJECT_NAME|g' "staging/infrastructure-scripts/$script_name"
sed -i 's|worldarchitect-memory-backups|$PROJECT_NAME-memory-backups|g' "staging/infrastructure-scripts/$script_name"
sed -i 's|worldarchitect\.ai|your-project.com|g' "staging/infrastructure-scripts/$script_name"
sed -i 's|$USER|$USER|g' "staging/infrastructure-scripts/$script_name"
sed -i 's|D&D campaign management|Content management|g' "staging/infrastructure-scripts/$script_name"
sed -i 's|Game MCP Server|Content MCP Server|g' "staging/infrastructure-scripts/$script_name"
sed -i 's|start_game_mcp\.sh|start_content_mcp.sh|g' "staging/infrastructure-scripts/$script_name"
# Add infrastructure script header with adaptation warning
sed -i '1i\#!/bin/bash\n# šØ DEVELOPMENT INFRASTRUCTURE SCRIPT\n# ā ļø REQUIRES PROJECT ADAPTATION - Contains project-specific configurations\n# This script provides development environment management patterns\n# Adapt paths, service names, and configurations for your project\n\n' "staging/infrastructure-scripts/$script_name"
else
echo "Warning: Infrastructure script not found: $script_name"
fi
done
šØ Orchestration System Export (orchestration/ ā orchestration/) - WIP PROTOTYPE:
/orch [task] for autonomous delegation, costs $0.003-$0.050/task/orch monitor agents and direct tmux attachment proceduresConfiguration Export:
šØ DELEGATION TO PYTHON IMPLEMENTATION: All technical export operations are handled by the robust Python implementation (exportcommands.py), while this command focuses on LLM-driven analysis and README generation.
import os import subprocess
result = subprocess.run(['git', 'rev-parse', '--show-toplevel'], capture_output=True, text=True) project_root = result.stdout.strip()
commands_dir = os.path.join(project_root, '.claude', 'commands') hooks_dir = os.path.join(project_root, '.claude', 'hooks')
commands_count = len([f for f in os.listdir(commands_dir) if f.endswith(('.md', '.py'))]) hooks_count = sum([len([f for f in files if f.endswith(('.sh', '.py', '.md'))]) for root, dirs, files in os.walk(hooks_dir)])
print(f"š Analysis: {commands_count} commands, {hooks_count} hooks detected")
# Execute the comprehensive Python implementation
python_script = os.path.join(project_root, '.claude', 'commands', 'exportcommands.py')
result = subprocess.run([python_script], capture_output=True, text=True)
if result.returncode != 0:
print(f"ā Export failed: {result.stderr}")
exit(1)
print(result.stdout)
compositional_commands = ['pr.md', 'copilot.md', 'execute.md', 'orch.md'] building_blocks = ['think.md', 'test.md', 'fix.md', 'plan.md']
print("šÆ Workflow Orchestrators:", compositional_commands) print("š§± Building Blocks:", building_blocks)
**Usage Pattern Insights**: Generate intelligent insights about command relationships
```python
# Analyze command interdependencies
print("š Command Composition Patterns:")
print("- /pr ā /think ā /execute ā /pushl ā /copilot ā /review")
print("- /copilot ā /execute ā /commentfetch ā /fixpr ā /commentreply")
print("- /execute ā /plan ā /think ā implementation ā /test")
project_root = subprocess.run(['git', 'rev-parse', '--show-toplevel'], capture_output=True, text=True).stdout.strip() python_script = os.path.join(project_root, '.claude', 'commands', 'exportcommands.py')
print("š Starting export via Python implementation...") result = subprocess.run(['python3', python_script], capture_output=True, text=True)
if result.returncode != 0: print(f"ā Export failed: {result.stderr}") exit(1)
print(result.stdout)
**šØ CRITICAL**: The above execution will print the PR URL as the final output, fulfilling the critical success requirement.
## POST-EXPORT ANALYSIS
After the Python implementation completes, provide intelligent analysis:
```python
# Analyze export results for documentation enhancement
print("\nš Export Analysis:")
print("ā
Command composition system exported successfully")
print("ā
Directory exclusions applied per requirements")
print("ā
Content filtering applied for project portability")
print("ā
One-click installation script generated")
print("ā
Comprehensive README with adaptation guide created")
import os import subprocess
result = subprocess.run(['git', 'rev-parse', '--show-toplevel'], capture_output=True, text=True) project_root = result.stdout.strip()
commands_dir = os.path.join(project_root, '.claude', 'commands') hooks_dir = os.path.join(project_root, '.claude', 'hooks')
commands_count = len([f for f in os.listdir(commands_dir) if f.endswith(('.md', '.py'))]) hooks_count = sum([len([f for f in files if f.endswith(('.sh', '.py', '.md'))]) for root, dirs, files in os.walk(hooks_dir)])
print(f"š Analysis: {commands_count} commands, {hooks_count} hooks detected")
# Execute the comprehensive Python implementation
python_script = os.path.join(project_root, '.claude', 'commands', 'exportcommands.py')
result = subprocess.run([python_script], capture_output=True, text=True)
if result.returncode != 0:
print(f"ā Export failed: {result.stderr}")
exit(1)
print(result.stdout)
compositional_commands = ['pr.md', 'copilot.md', 'execute.md', 'orch.md'] building_blocks = ['think.md', 'test.md', 'fix.md', 'plan.md']
print("šÆ Workflow Orchestrators:", compositional_commands) print("š§± Building Blocks:", building_blocks)
**Usage Pattern Insights**: Generate intelligent insights about command relationships
```python
# Analyze command interdependencies
print("š Command Composition Patterns:")
print("- /pr ā /think ā /execute ā /pushl ā /copilot ā /review")
print("- /copilot ā /execute ā /commentfetch ā /fixpr ā /commentreply")
print("- /execute ā /plan ā /think ā implementation ā /test")
cat > README.md << 'EOF'
ā ļø REFERENCE EXPORT - This is a reference export from a working Claude Code project. These commands have been tested in production but may require adaptation for your specific environment. Claude Code excels at helping you customize them for your workflow.
Transform Claude Code into an autonomous development powerhouse through simple command hooks that enable complex workflow orchestration.
Smart Fake Code Detection: Built-in /fake command uses AI analysis (not just pattern matching) to detect:
Get started immediately with these powerful command combinations:
# Comprehensive code analysis
/arch /think /fake
# Full PR workflow automation
/pr implement user authentication
# Advanced testing with auto-fix
/test all features and if any fail /fix then /copilot
[Include rest of enhanced README content with installation, setup, and advanced workflows...] EOF
echo "ā Enhanced main README.md with command combination superpowers"
šØ **CRITICAL LEARNING**: Always update the actual target file (README.md), never create variants like README_UPDATED.md.
# Execute the Python implementation
project_root = subprocess.run(['git', 'rev-parse', '--show-toplevel'],
capture_output=True, text=True).stdout.strip()
python_script = os.path.join(project_root, '.claude', 'commands', 'exportcommands.py')
print("š Starting export via Python implementation...")
result = subprocess.run(['python3', python_script], capture_output=True, text=True)
if result.returncode \!= 0:
print(f"ā Export failed: {result.stderr}")
exit(1)
# Print the output (including the critical PR URL)
print(result.stdout)
šØ CRITICAL: The above execution will print the PR URL as the final output, fulfilling the critical success requirement.
After the Python implementation completes, provide intelligent analysis:
# Analyze export results for documentation enhancement
print("\nš Export Analysis:")
print("ā
Command composition system exported successfully")
print("ā
Directory exclusions applied per requirements")
print("ā
Content filtering applied for project portability")
print("ā
One-click installation script generated")
print("ā
Comprehensive README with adaptation guide created")
šÆ SUCCESS CRITERIA: