Create a production-ready Google Cloud agent using ADK and Agent Starter...
Scaffold production-ready Google Cloud agents using ADK and Agent Starter Pack. Choose from 5 templates (ReAct, RAG, LangGraph, Multi-Agent, Multimodal) with automatic CI/CD, testing, and deployment configuration for Cloud Run, GKE, or Agent Engine.
/plugin marketplace add jeremylongshore/claude-code-plugins-plus-skills/plugin install access-control-auditor@claude-code-plugins-plussonnetScaffold a complete agent project using Google's Agent Development Kit (ADK) and Agent Starter Pack with production-ready infrastructure.
Best for: General-purpose agents with tool use Includes: Search, code execution, custom tools Use case: Q&A agents, research assistants, task automation
Best for: Document-based Q&A Includes: Vertex AI Search, Vector Search integration Use case: Knowledge bases, documentation agents, customer support
Best for: Complex workflows with state management Includes: LangGraph orchestration, custom nodes Use case: Multi-step processes, conditional logic, state tracking
Best for: Collaborative multi-agent systems Includes: Specialized agents, role-based coordination Use case: Software development, research teams, content creation
Best for: Audio/video/text processing Includes: Multimodal understanding, live streaming Use case: Video analysis, audio transcription, media processing
Pros:
Cons:
Best for: Web-facing agents, APIs, low-traffic services
Pros:
Cons:
Best for: Production agents, high-scale deployment
Pros:
Cons:
Best for: Complex multi-agent systems, enterprise deployment
/create-agent
Then provide:
Input:
Agent name: customer-support-agent
Template: agentic_rag
Deployment: cloud_run
Project: my-gcp-project
Region: us-central1
Generated Structure:
customer-support-agent/
├── src/
│ ├── agent.py # Main agent implementation
│ ├── tools/
│ │ ├── search_tool.py
│ │ └── custom_tools.py
│ ├── config.py # Configuration
│ └── prompts/
│ └── system_prompt.txt
├── deployment/
│ ├── Dockerfile
│ ├── cloudbuild.yaml
│ ├── cloud-run.yaml
│ └── terraform/
│ ├── main.tf
│ ├── variables.tf
│ └── outputs.tf
├── tests/
│ ├── unit/
│ │ ├── test_agent.py
│ │ └── test_tools.py
│ └── integration/
│ └── test_e2e.py
├── .github/workflows/
│ ├── test.yaml # CI testing
│ └── deploy.yaml # CD deployment
├── requirements.txt
├── pyproject.toml
├── README.md
└── .env.example
cd customer-support-agent
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
# Authenticate
gcloud auth login
gcloud config set project my-gcp-project
# Enable APIs
gcloud services enable \
aiplatform.googleapis.com \
run.googleapis.com \
cloudbuild.googleapis.com
# Copy example env
cp .env.example .env
# Edit with your values
vim .env
Required variables:
GOOGLE_CLOUD_PROJECT=my-gcp-project
GOOGLE_CLOUD_REGION=us-central1
GOOGLE_APPLICATION_CREDENTIALS=/path/to/key.json
VERTEX_AI_SEARCH_DATASTORE=datastore-id
# Run agent locally
python src/agent.py
# Or use ADK CLI
adk serve --port 8080
# Test endpoint
curl http://localhost:8080/query \
-H "Content-Type: application/json" \
-d '{"question": "What are your support hours?"}'
# Unit tests
pytest tests/unit/
# Integration tests
pytest tests/integration/
# Coverage report
pytest --cov=src tests/
# Using ADK CLI (recommended)
adk deploy \
--target cloud_run \
--region us-central1 \
--allow-unauthenticated
# Or using gcloud
gcloud run deploy customer-support-agent \
--source . \
--region us-central1 \
--allow-unauthenticated \
--memory 2Gi \
--cpu 2 \
--timeout 300s
# Connect GitHub repo
gh repo create customer-support-agent --public
git init
git add .
git commit -m "Initial agent setup"
git branch -M main
git remote add origin https://github.com/USER/customer-support-agent.git
git push -u origin main
# GitHub Actions automatically trigger on push
# View logs
gcloud run services logs read customer-support-agent \
--region us-central1 \
--limit 100 \
--format json
# Check metrics
gcloud monitoring dashboards create \
--config-from-file monitoring/dashboard.json
# Automatically included in agentic_rag template
from vertexai.preview.rag import VectorSearchTool
vector_search = VectorSearchTool(
index_endpoint="projects/PROJECT/locations/REGION/indexEndpoints/INDEX",
deployed_index_id="deployed_index"
)
agent.add_tool(vector_search)
# Automatically included in crewai_coding_crew template
from crewai import Agent, Task, Crew
researcher = Agent(
role="Researcher",
goal="Research technical topics",
tools=[search_tool]
)
writer = Agent(
role="Writer",
goal="Write documentation",
tools=[write_tool]
)
crew = Crew(
agents=[researcher, writer],
tasks=[research_task, write_task]
)
# Add custom tools to any agent
from vertexai.preview.agents import FunctionTool
@FunctionTool
def check_inventory(product_id: str) -> dict:
"""Check product inventory levels"""
# Your custom logic
return {"in_stock": True, "quantity": 42}
agent.add_tool(check_inventory)
Development:
Production (Cloud Run):
Monthly estimate for typical agent:
1. Authentication Errors
# Fix: Set credentials
export GOOGLE_APPLICATION_CREDENTIALS=/path/to/key.json
gcloud auth application-default login
2. Timeout Errors
# Fix: Increase Cloud Run timeout
gcloud run services update customer-support-agent \
--timeout 300s
3. Memory Issues
# Fix: Increase memory
gcloud run services update customer-support-agent \
--memory 4Gi
4. Rate Limiting
# Fix: Implement exponential backoff
# Code automatically included in templates
After deployment:
Documentation:
Examples:
This command scaffolds production-ready agent projects in <5 minutes with full CI/CD, testing, and deployment automation.