Systematic model comparison using tidymodels workflow sets. This command orchestrates the **tidymodels-engineer** and **feature-engineer** agents to build and compare multiple models.
Compares multiple machine learning models using tidymodels workflow sets for classification or regression tasks.
/plugin marketplace add choxos/BiostatAgent/plugin install choxos-r-tidy-modeling-plugins-r-tidy-modeling@choxos/BiostatAgentSystematic model comparison using tidymodels workflow sets. This command orchestrates the tidymodels-engineer and feature-engineer agents to build and compare multiple models.
The feature-engineer agent will:
The tidymodels-engineer agent will:
Create systematic combinations of:
Execute parallel model fitting with:
Generate comparison outputs:
Based on results:
/r-model-comparison [data_path] [target] [task_type] [models]
data_path: Path to the datasettarget: Name of the outcome variabletask_type: One of classification, regressionmodels: Comma-separated list or all (default: sensible defaults based on task)Classification:
logistic - Logistic regressionglmnet - Regularized logistic regressionrf - Random forestxgb - XGBoostlightgbm - LightGBMsvm - Support vector machinemlp - Neural networkRegression:
lm - Linear regressionglmnet - Regularized regressionrf - Random forestxgb - XGBoostlightgbm - LightGBMsvm - Support vector regressionmars - MARSoutput/
├── code/
│ └── model_comparison.R # Reproducible script
├── reports/
│ └── model_comparison.html # Comparison report
├── models/
│ ├── tuning_results.rds # All tuning results
│ └── final_model.rds # Best model fitted
└── figures/
├── model_comparison.png # Performance comparison
└── calibration.png # Calibration plots
/r-model-comparison data/credit.csv default classification rf,xgb,glmnet
This compares random forest, XGBoost, and regularized logistic regression for predicting credit default.
Data Summary
Preprocessing Summary
Model Performance
Visualizations
Recommendations
For advanced configurations, you can specify: