Clinical Scenario Evaluation Workflow
Overview
Comprehensive Clinical Scenario Evaluation (CSE) using the Mediana package to evaluate trial designs across multiple scenarios, analysis strategies, and success criteria.
Workflow Phases
Phase 1: Data Model Construction
<Task>
subagent_type: cse-specialist
prompt: |
Build the Data Model:
1. Select appropriate outcome distribution:
- Continuous: NormalDist
- Binary: BinomDist
- Survival: ExpoDist, WeibullDist
- Count: PoissonDist, NegBinomDist
- Multivariate: MVNormalDist, MVExpoDist, etc.
2. Define sample sizes or event counts to evaluate
3. Specify treatment effect scenarios:
- Conservative (pessimistic)
- Expected (primary assumption)
- Optimistic
4. Configure design parameters (if event-driven):
- Enrollment period and distribution
- Study duration
- Dropout rates
5. Build complete DataModel object
</Task>
Phase 2: Analysis Model Construction
<Task>
subagent_type: cse-specialist
prompt: |
Build the Analysis Model:
1. Define all statistical tests:
- Match test method to endpoint type
- Specify sample order correctly
2. Add descriptive statistics for monitoring
3. Configure multiplicity adjustments (if needed)
</Task>
<Task>
subagent_type: multiplicity-expert
condition: multiple_hypotheses == TRUE
prompt: |
Add multiplicity adjustment to Analysis Model:
1. Select appropriate procedure based on structure
2. Configure procedure parameters
3. Specify test ordering/families
4. Validate FWER control
</Task>
Phase 3: Evaluation Model
<Task>
subagent_type: cse-specialist
prompt: |
Build the Evaluation Model:
1. Define power criteria:
- MarginalPower for individual tests
- DisjunctivePower for "at least one"
- ConjunctivePower for "all"
- WeightedPower for prioritized
2. Add summary statistics (means, counts)
3. Ensure labels are clear for reporting
</Task>
Phase 4: Simulation Execution
<Task>
subagent_type: cse-specialist
prompt: |
Execute CSE and generate results:
1. Configure SimParameters:
- n.sims (10000+ for stable estimates)
- proc.load (parallel computation)
- seed (reproducibility)
2. Run CSE()
3. Extract and summarize results
4. Generate Word report (optional)
</Task>
Success Criteria
- All three models (Data, Analysis, Evaluation) complete
- Simulations run successfully
- Results interpretable and documented
- Report generated (if requested)
Final Deliverables
- Complete R code for CSE
- Results summary table
- Word report (optional)
- Scenario comparison visualization
- Recommendations based on results
Configuration Options
n_sims: Number of simulations (default: 10000)
proc_load: "full", "high", "med", "low", or integer
generate_report: TRUE/FALSE
report_sections: Section organization for report
scenarios: Named list of treatment effect scenarios
sample_sizes: Vector of sample sizes to evaluate
Example Structure
# Data Model
data.model <- DataModel() +
OutcomeDist(outcome.dist = "NormalDist") +
SampleSize(seq(80, 120, 10)) +
Sample(id = "Control", outcome.par = parameters(...)) +
Sample(id = "Treatment", outcome.par = parameters(...))
# Analysis Model
analysis.model <- AnalysisModel() +
Test(id = "Primary", samples = samples("Control", "Treatment"), method = "TTest") +
MultAdjProc(proc = "HolmAdj")
# Evaluation Model
evaluation.model <- EvaluationModel() +
Criterion(id = "Power", method = "MarginalPower",
tests = tests("Primary"), par = parameters(alpha = 0.025))
# Run CSE
results <- CSE(data.model, analysis.model, evaluation.model,
SimParameters(n.sims = 10000, proc.load = "full", seed = 12345))