Quickly create a new Atomic Agents agent with proper configuration, schemas, and system prompt
Creates a new Atomic Agents agent with proper configuration, schemas, and system prompt. Use this to quickly scaffold a complete agent with input/output schemas and boilerplate code.
/plugin marketplace add BrainBlend-AI/atomic-agents/plugin install atomic-agents@brainblend-pluginsDescription of the agent to create (e.g., "a research agent that summarizes articles")Create a new Atomic Agents agent based on the user's description.
If $ARGUMENTS is provided, parse the agent description. Otherwise, ask:
Use the Skill tool to load: atomic-agents
Use the Skill tool to load: atomic-schemas
Use the Skill tool to load: atomic-prompts
agents/ directory or determine where to create the agentUse the schema-designer agent for complex schemas:
Task(subagent_type="schema-designer", prompt="Design input and output schemas for an agent that: [description]. Use ultrathink.")
Create the following:
schemas.py (or add to existing):
from atomic_agents.lib.base.base_io_schema import BaseIOSchema
from pydantic import Field
class [Agent]InputSchema(BaseIOSchema):
"""Input for [agent purpose]."""
# fields...
class [Agent]OutputSchema(BaseIOSchema):
"""Output from [agent purpose]."""
# fields...
[agent_name].py:
import instructor
import openai
from atomic_agents.agents.base_agent import AtomicAgent, AgentConfig
from atomic_agents.lib.components.system_prompt_generator import SystemPromptGenerator
from atomic_agents.lib.components.chat_history import ChatHistory
from .schemas import [Agent]InputSchema, [Agent]OutputSchema
# Initialize client
client = instructor.from_openai(openai.OpenAI())
# Configure agent
config = AgentConfig(
client=client,
model="gpt-4o-mini",
history=ChatHistory(),
system_prompt_generator=SystemPromptGenerator(
background=[
"You are an expert [role].",
"Your purpose is to [purpose].",
],
steps=[
"1. [First step]",
"2. [Second step]",
"3. [Third step]",
],
output_instructions=[
"Provide [format instructions].",
"Ensure [quality requirements].",
],
),
)
# Create agent
agent = AtomicAgent[InputSchema, OutputSchema](config=config)
Show how to use the created agent:
from [module] import agent, [Agent]InputSchema
# Run the agent
input_data = [Agent]InputSchema(field="value")
output = agent.run(input_data)
print(output)
Perform a quick validation:
Report any issues found.
Provide: